TABLES AND FIGURES

TABLES

Table 1.1 Summary of NAVY’s Methodology 11
Table 1.2 Structure of the Evaluation Worksheet 13
Table 1.3 Second Life Navigational Aids 16
Table 1.4 Examples of Learning Activities for the Abyss Observatory and the Associated Navigational Aids 17
Table 1.5 Guidelines Based on Positive Design Aspects that Aid Navigation and Wayfinding 21
Table 1.6 A Subset of Design Guidelines 25
Table 1.7 Navigational Aids and Design Considerations 33
Table 2.1 Reasons for Elimination of Prospective Study Participants and Final Sample Size (N = 60) 49
Table 2.2 Frequencies of Primary Interest in Second Life (N = 60) 50
Table 2.3 Chi-square Scores for Assignment to Test Condition Based on Age, Gender, and Race 51
Table 2.4 Cronbach’s Alphas for Presence, Cognitive Load, and Retention Scales 53
Table 2.5 Correlation Matrix for Independent, Dependent, and Demographic Variables (N = 60) 55
Table 2.6 Means and Standard Deviations for Cognitive Load, Retention, and Presence by Communication Modality 55
Table 2.7 Post-hoc Differences in Means of Cognitive Load, Retention and, Presence by Condition 56
Table 7.1 Summary of Coding Categories for Freudbot Conversations in Two Settings 160
Table 7.2 Distribution of Social Presence Measures 161
Table 8.1 Various Projects Incorporating Bot Activities 174
Table 9.1 Complete Listing of the 27 Criteria That Comprise the Analysis Grid Organized into Four Main Themes 200
Table 10.1 Knowledge Questionnaire: Students’ Mean Scores and Standard Deviation 235
Table 12.1 Pearson Correlation Between Main Variables: Social Presence, Engagement, and Satisfaction 268
FIGURES

Figure 1.1 The problem of navigation and wayfinding 5
Figure 1.2 A map of the deep|think Island in Second Life, showing its division into five sections 9
Figure 1.3 Finding the way to the library 10
Figure 1.4 A user observation session with the researcher following the participant as the latter went about conducting activities on the island 17
Figure 1.5 A post-observation session 18
Figure 1.6 An interview with the designer of Genome Island 19
Figure 1.7 Flow diagram of NAVY’s methodology 23
Figure 1.8 Library in the deep|think Island 28
Figure 1.9 The transition point in the paths from grass to the wooden surface includes a ramp which can be useful for wheelchair users 28
Figure 1.10a Addition of directional signs at a decision point on an intersection 29
Figure 1.10b Re-designed entry point of The Abyss Observatory 30
Figure 1.11a The seven pillars of wisdom outside The Open University’s library on the main campus 32
Figure 1.11b The seven pillars of wisdom outside The Open University’s library on the virtual campus 32
Figure 3.1 Research participants: registration in Second Life 69
Figure 3.2 Interface of the NVivo 8 software: Organization of the data in documents and sections 73
Figure 3.3 Interface of the NVivo 8 software: Category tree 73
Figure 4.1 Moonworld: a Second Life learning tool for space exploration. Copyright 2011–2012 by NASA-sponsored Classroom of the Future, Center for Educational Technologies, Wheeling Jesuit University. Reprinted with permission 92
Figure 4.2 Xplanet Globe tests in OpenSim platform 98
Figure 4.3 Max, the Virtual Guide Dog from Virtual Helping Hands 103
Figure 5.1 The real and virtual participants using Second Life 120
Figure 5.2 Exploring the historical islands in Second Life 125
Figure 7.1 Web-based interface to Freudbot in Heller et al. (2005) 155
Figure 7.2 Second Life interface to Freudbot on Athabasca University Island. 157
Figure 8.1 Information being provided to a newbie 173
Figure 8.2 Bots interacting with one another while a human avatar looks on 177
Figure 8.3 Schematic framework of inworld and external components of bot creation 180
Figure 8.4 Example of an event the student bot triggers based on the teacher avatar’s behaviour 181
Figure 8.5 Bot schematic 183
Figure 8.6 Bot schematic with step-by-step procedures 184

Figure 9.1 A classroom space that emulates a real-life traditional spatial design and layout 203
Figure 9.2 The participants learn how to build a street lamp while working within an enclosed individual area, allowing for comfortable camera movement in a virtual space that simulates a street corner 203
Figure 9.3 A workshop setting where the avatars can freely move around the teaching space. The chat range is demarcated by the boundary of the red platform 205
Figure 9.4 At the beginning of the workshop “Creating a teleport hub and using the Flight Feather,” the tutor presents the learning objectives on a whiteboard 205
Figure 9.5 For the workshop “Building a holodeck with the Builder’s Buddy script,” the tutors prepared the materials within a hierarchical structure where basic materials and materials for each scene are clearly indicated 206
Figure 9.6 A Q&A session after a workshop using the “CloseText rezzer” on channel 99 to drop participant questions 210
Figure 9.7 Avatars freely occupy a workshop space as they build their own projects 211
Figure 9.8 During the “Bracelets, bracelets, bracelets!” workshop, the participant sits on a chair and builds her project on a desk 212
Figure 9.9 While avatars are constrained to their allotted space, the tutor circulates freely among them 212
Figure 9.10 During the “Bracelets, bracelets, bracelets!” workshop, the tutor displays the three bracelets on a gigantic scale in the sky overhead 214
Figure 9.11 While the participants work on their own projects, progressive stages of development remain visible in the sky to serve as a reference 214

Figure 9.12 Mapping of all the analysis grid criteria is grouped according to theme and relationship to pedagogical or technical expertise. The criteria with the most impact are highlighted in red 220

Figure 9.13 Pedagogical approach versus structure of the environment: moving toward good teaching practices (quadrant 4) in a virtual world setting 222

Figure 10.1 The list of the historical sites in NetConnect virtual worlds: Lokroi, Biskupin, and Glauberg 229

Figure 10.2 The temple in Lokroi, the houses in Biskupin and Glauberg 230

Figure 10.3 Screenshots of the multimedia sections in the Lokroi virtual world: Videos, Pictures, Extra 231

Figure 10.4 Objects that the user can manipulate in the NetConnect virtual worlds of Lokroi, Biskupin, and Glauberg 231

Figure 10.5 A pinake, courtesy of the Sistema Museale Virtuale della Magna Graecia (Virtual Museum System of Ancient Greece) project at http://www.virtualmg.net, and an avatar in Lokroi 232

Figure 11.1 An example of a LAMS sequence 254

Figure 11.2 An example of an Edmodo site page 255

Figure 12.1 Classroom and meeting space 266

Figure 12.2 Outdoor team meeting space 266

Figure 12.3 Students’ avatars dressed like Mayans in Chichen Itza, Mexico 267

Figure 12.4 Relationships between Teaching, Cognitive, and Social Presence and Tools, Tasks, and Group Cohesion 272

Figure 13.1 Example of how text may appear in a virtual world (virtual classroom at Freie Universität Berlin, Germany) 286