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Overture: Alien Music

Steven Spielberg’s 1977 movie Close Encounters of the Third Kind declares that we are 
not alone, and we should not be afraid. The film follows ordinary people after they 
experience a close encounter with an unidentified flying object. After this experi-
ence, the protagonist of the movie, Roy Neary, becomes obsessed with seeing the 
UFO again, as well as with a strange shape that has a deep meaning that he cannot 
quite fathom. Eventually he realizes that this shape represents Devils Tower, Wyo-
ming, which is the location selected for first contact between humans and aliens.

A famous short musical signal composed by John Williams plays a key role in 
the film. Williams strove to write a signal that was long enough to be set apart from 
the simplest musical elements (chords or intervals) but not so long as to exist on its 
own as a melody. He decided that these goals required a theme that was only five 
notes in length, and composed about 350 different five-note permutations. Spielberg 
preferred one in particular, and it became one of the most famous musical themes 
in film history. At the climax of the film, it is performed on an ARP 2500 synthesizer 
located on a massive runway constructed atop Devils Tower. The music greets, and 
communicates with, the alien visitors.

A young, fresh-faced Philip Dodds was the ARP engineer who set up the system 
used in the movie. When the original actor who was to play it became sick, Spiel-
berg saw Dodds working on the machine, liked his look, and cast him in the role of 
playing the synthesizer. As the scene unfolds, Dodds plays the musical signal faster 
and louder while the chief scientist (Lacombe, played by François Truffaut) strides 
out along the runway. Eventually the enormous mother ship arrives, hovers over 
the runway, and loudly echoes the notes that Dodds plays. This musical mimicking 
quickly erupts into an interstellar jam session of increasing tempo and complexity. 
Awestruck and wide eyed, Dodds exclaims, “What are we saying to each other?” This 
is a very deep question indeed.

The intended message in the film is that music is—literally—a universal lan-
guage, one shared by all intelligent life forms. That the alien ship generates the same 
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notes, and that it jams with Dodds’s character in the same musical system, supports 
this optimistic view. To answer Dodds’s question a scientist standing beside him 
says, “Seems they’re trying to teach us a basic tonal vocabulary.” Another immedi-
ately adds, “It’s the first day of school, fellas.”

However, other intriguing scenarios exist; there are alternative musical possi-
bilities that Spielberg did not explore in his film. Does the fact that both the ARP 
2500 and the mother ship generate the same basic tonal vocabulary imply that the 
humans and the aliens share the same underlying musical theory? Alternatively, is 
it possible that a completely different musical theory—an alien music theory that is 
dramatically different from our own—is still capable of generating the same patterns 
of musical notes? Perhaps all these fellas know they are attending the first day of 
school, but are not aware of the lecture topic!

Networks and New Musical Theory

The purpose of this book is to explore the possibility that different systems that are 
capable of generating the same musical inputs and outputs can do so by using quite 
different theories of music. Fortunately, instead of requiring a close encounter of 
the third kind for this exploration, this book adopts a more practical approach. A 
particular type of computer simulation, an artificial neural network, is taught to 
generate responses that are consistent with Western musical theory. For instance, 
the computer simulation is presented the tones that define a particular scale, and 
learns to respond with the tonic note of that scale, or to identify that scale as being 
major or minor.

However, when a network learns to generate the correct outputs to various 
musical inputs, it is not constrained by traditional Western music theory. Many 
researchers argue that the internal workings of artificial neural networks are quite 
distinct from the clear formal properties found in logic, mathematics, or music 
theory. As a result, it is possible that an artificial neural network can discover a 
completely different method —an alien or novel music theory—that generates the 
same input/output relationships as are defined by Western music theory.

In order to determine whether this is possible, it is necessary to examine the 
internal structure of a trained network to discover exactly how it generates musical 
responses. An artificial neural network is a messy collection of different processors 
(analogous to neurons) that send signals to one another through a larger and messier 
collection of weighted connections (analogous to synapses between neurons). The 
musical knowledge of a trained network lies in its internal patterns of connectiv-
ity. The messiness of this knowledge makes the existence of a new music theory 
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possible. By making sense of a network’s internal structure, we can discover the 
musical regularities that the network has learned, on its own, to exploit. Is the 
theory that the network learns the same as our own?

We will soon see that artificial neural networks can discover novel musical 
theories that seem quite different from typical accounts of Western music. This 
has interesting implications for music, insofar as it reveals alternative musical for-
malisms. This also has important implications for the study of musical cognition, 
because it reveals a variety of different kinds of representations that the human 
brain might use to process music.

Structure of the Book

The use of artificial neural networks to study human cognition is flourishing, and 
they are growing in importance in the study of musical cognition as well (Griffith 
& Todd, 1999; Todd & Loy, 1991). However, in this connectionist literature one 
rarely finds detailed interpretations of the internal structure of networks. A main 
purpose of this book is to provide numerous case studies of this approach, and to 
demonstrate its value to theories of music and to theories of musical cognition. I 
have hoped to convey this general message with the organization of the book.

The first two chapters provide a historical context for the current research. 
Chapter 1 provides a brief history of the scientific study of music and musical cog-
nition, from the scientific revolution of the 17th century, through 19th century 
psychophysics, to modern musical cognitivism. One general theme that emerges 
from this discussion is that the psychology of music is intrinsically interdisciplin-
ary; it involves the science of sound, the formal understanding of music theory, 
and the experimental understanding of music perception. It also makes clear that 
the modern psychology of music, musical cognition, views music perception as 
involving the active processing of auditory stimuli by organizing these stimuli using 
mental representations of music.

Chapter 2 then relates connectionist cognitive science, which uses artifi-
cial neural networks, to classical cognitive science, which views cognition as the 
rule-governed manipulation of symbols. Connectionism reacts against this symbolic 
view, and many musical connectionists seek to deal with regularities that cannot be 
captured formally. Chapter 2 introduces some basic properties of artificial neural 
networks, and introduces the methodology adopted in the chapters that follow. The 
chapter culminates in the argument that these networks should not be viewed as 
systems that are sensitive to informal properties of music. Instead, one should use 
these networks to inform both music theory and musical cognition by making sense 
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of their internal structure. This requires a detailed understanding of how networks 
solve problems; this understanding will be formal. Networks do not merely capture 
informal properties of music; they capture new formal musical regularities.

The next six chapters provide case studies of this new approach to musical con-
nectionism. Chapter 3 begins by introducing a case study in which a very simple 
network, called a perceptron, accomplishes a basic musical task: it learns to identify 
the tonic pitch of a presented scale. When we examine the connection weights of 
this network to attempt to explain how it works, we find a perfectly plausible formal 
musical interpretation of the perceptron’s structure. However, this structure differs 
from the typical account of scale structure.

Chapter 4 continues with the study of scales by training a network to identify 
the mode of a presented scale, deciding whether a stimulus is a major scale or a 
harmonic minor scale. A more powerful artificial neural network, called a multilayer 
perceptron, is required to accomplish this task. The multilayer perceptron is more 
powerful than the perceptron discussed in Chapter 3 because it includes intermedi-
ate processors called hidden units. Interpreting this multilayer perceptron’s internal 
structure reveals a quite novel account of the formal difference between major and 
minor keys, one that focuses upon the relationship between pairs of pitch-classes 
that are separated from one another by a particular musical interval, the tritone.

Chapter 5 provides another set of example networks that are trained on a par-
ticular task, called key-finding, which combines the tasks discussed in Chapters 3 
and 4. To key-find a musical stimulus is to assert both the mode (major vs. minor) 
and the tonic of the scale used as the source of the musical stimulus’s notes. The 
chapter begins with a multilayer perceptron that learns to generate the tonic and 
mode for a presented scale. It solves this problem with four hidden units that imple-
ment an interesting type of distributed representation called a coarse code. The 
interpretation of this network introduces the basic properties of coarse coding. 
Chapter 5 then considers a broader task: identifying the keys of various musical 
compositions. This is done using simpler networks, perceptrons, to create con-
nectionist variants of three more traditional key-finding theories. The perceptrons 
identify the musical keys of a large number of test stimuli with a high degree of 
accuracy. The chapter ends by pointing out that an interpretation of the structure 
of these perceptrons suggests possible modifications to more traditional theories 
of key-finding.

Chapter 6 turns to the study of musical problems involving harmony: a com-
bination of different pitches that occur simultaneously. It begins by introducing 
a very basic element of harmony, the triad, and defines four different triad types: 
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major, minor, diminished, and augmented. It then explores a multilayer perceptron 
that learns to identify these triad types. An examination of the structure of this 
network demonstrates that its hidden units apply the same “name” to a number of 
different pitch-classes that are related to one another by particular musical intervals. 
We call such an equivalence class a strange circle. The chapter then proceeds to 
define the properties of these strange circles and ends with another case study of a 
network trained to identify different types of chords, tetrachords. The analysis of 
this network’s structure also reveals that it organizes inputs according to a variety 
of strange circles.

Chapter 7 provides a more complex example of a network trained to classify 
chords. It describes additional formulae for defining 12 different types of tetrachords 
for each of music's 12 major keys. It then reports the training of a multilayer percep-
tron that learned to classify an input tetrachord into these different tetrachord types. 
This more complex network requires seven hidden units to solve this classification 
problem. However, we can interpret its internal structure. This is because it also 
organizes input pitch-classes using strange circles. The interpretation of this net-
work introduces an additional interpretative technique (examining bands in jittered 
density plots). As well, the structure of this extended tetrachord network provides 
another elegant example of coarse coding.

Chapter 8 explores an important source of tonality in Western music: music-
ally related sequences of chords called chord progressions. The chapter begins by 
discussing an important chord sequence in jazz called the ii-V-I progression. We 
teach a number of different networks this progression; when provided one chord, a 
network responds with the next chord in the progression. A key difference between 
these various networks is that different codes are used to represent input and output 
chords. The question of interest is whether the choice of encoding affects the ease 
of learning the progression. Next, we turn to an elaboration of the ii-V-I progression 
and train networks on different encodings of a more complex jazz progression, the 
Coltrane changes. Again encoding is critical: the choice of encoding for the Coltrane 
changes determines not only the amount of learning but also the complexity of the 
network required to learn this progression. I will interpret a perceptron that learns 
one encoding of the Coltrane changes; this interpretation reveals once again the 
utility of the strange circles that we have already encountered in earlier chapters.

The final chapter of the book, Chapter 9, steps back to examine the general 
results reported in the various case studies. It begins with a discussion of the nature 
of this research program and then summarizes its most important results. It then 
turns to considering the implications of these results, first to the theory of music 
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and then to the cognitive science of music. It concludes that our straightforward 
approach to musical networks has succeeded; even though the case studies involved 
training simple networks on basic properties of Western tonality, they led to the 
discovery a number of interesting, new musical properties. This success points the 
way to future musical studies; network interpretation is at the heart of each of these 
potential areas of investigation.

One purpose of this book is to present case studies that show that musical con-
nectionism of the form championed here is viable. A second purpose is to inspire 
researchers to pursue similar studies, by studying the network architectures detailed 
in the chapters that follow or by exploring musical connectionism by interpreting 
different types of networks. All of the simulations that are described in this book 
were performed using networks whose properties have been described in detail 
elsewhere (Dawson, 2004). The software used to conduct these simulations has 
also been described in detail (Dawson, 2005) and is available free of charge from the 
author’s website. Web resources for this book, which include links to software, the 
training files used to conduct the various simulations, resources for building new 
training files, and other relevant information are available here: http://www.bcp.
psych.ualberta.ca/~mike/AlienMusic/
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Science, Music, and Cognitivism

1.1 Mechanical Philosophy, Mathematics, and Music

Natural philosophy, developed by such giants as Copernicus, Galileo, Boyle, Newton, 
and Descartes, reigned during the scientific revolution from 1543 (the year of Coper-
nicus’s publication of On the Revolutions of the Heavenly Spheres) to 1687 (the year 
of Newton’s publication of Mathematical Principles of Natural Philosophy) (Shapin, 
1996). Shapin notes that the natural philosophy that emerged during the scientific 
revolution could also be called mechanical philosophy because it recognized that a 
variety of machines could be created that appeared to be purposeful, intentional, 
or sentient. Early natural philosophers were inspired by the properties of clocks 
because during the scientific revolution a variety of clockwork automata were cre-
ated (Wood, 2002).

Viewing the world as a clock, natural philosophy embraced mathematics for 
describing and explaining nature’s workings (Shapin, 1996). Mathematics played 
a key role in the theories of Galileo, Bacon, and Boyle; Newton’s discoveries 
revealed that physical laws expressible in mathematical form govern the universe. 
Music played a key role in the pursuit of the mathematical explanation of nature. 
Kepler sought musical harmony in the motions of the planets (Stephenson, 1994). 
Lagrange used musical sound to link properties of his calculus to the physical 
world (Dhombres, 2002). As a student, Newton explored various mathematical 
means for dividing the octave into smaller musical intervals (Isacoff, 2001). Many 
natural philosophers believed that music provided evidence of the mathematical 
perfection of the natural world.

Of course the relation between mathematics and music originated long before 
natural philosophy. Around 500 BC, Pythagoras linked perceived pitch to the fre-
quency at which a string vibrated. The Pythagoreans also determined that the most 
consonant musical intervals are ratios of string lengths that involved simple whole 
integers: 1/1 for unison, 2/1 for the octave, 3/2 for the perfect fifth, and 4/3 for the 
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perfect fourth. In contrast, the ratio for a very dissonant interval, the tritone, is 45/32. 
Pythagorean geometry led to the discovery of irrational numbers, but irrational 
numbers are also found in music, and are related to dissonant musical intervals 
(Pesic, 2010).

Pythagorean notions of consonance led to tuning discrepancies (Donahue, 2005). 
If one starts at one pitch, and moves to a note that is seven Pythagorean octaves 
higher, one does not reach exactly the same note that is produced by moving 12 
Pythagorean perfect fifths higher. The two final notes differ by the so-called Pythag-
orean comma (which equals 24 cents, where 100 cents = 1 semitone). Thus, one 
cannot have a perfect musical tuning system that includes perfect ratios for both 
octaves and fifths. This taunted those who believed in the mathematical perfection 
of music or nature. If consonant ratios are mathematically perfect, then why can 
they not be used to tune instruments whose notes spanned multiple octaves? At 
the start of the scientific revolution, many scholars, motivated by this problem, 
attempted to develop alternative approaches to tuning (Cohen, 1984).

1.2 Mechanical Philosophy and Tuning

1.2.1 Tempered Scales

The new approaches to tuning that emerged during the scientific revolution were 
motivated by several profound changes in music (Cohen, 1984). First, music became 
polyphonic: more than one voice or instrument simultaneously performed different 
parts. As a result, musical harmony became central to music, and the consonant 
combination of multiple musical parts required a proper tuning system. Second, 
new intervals (thirds and sixths) became accepted as being consonant. The English 
composer John Dunstable popularized these intervals in the early 15th century. 
However, Pythagorean tuning ignores these intervals. New approaches to tuning 
had to ensure the consonance of these new intervals. Third, fixed intonation instru-
ments—instruments with notes tuned to specific pitches that cannot be altered 
during performance, like the modern piano—were more central to music. In addi-
tion, the notes of these instruments ranged over several octaves.

All of these developments created a need for a practical solution to the Pythagor-
ean tuning discrepancy. In general, mechanical philosophers addressed this problem 
by developing new methods for dividing the octave into smaller intervals to define 
sets of available musical notes: they invented tempered scales. The primary goal 
of a tempered scale is to remove the Pythagorean comma (Donahue, 2005). This 
is accomplished by ensuring that, from some starting note with a frequency f, the 
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note an octave higher has a frequency of 2f. In other words, the octave has primacy. 
Then, some other notes are added; these notes conform to the Pythagorean interval 
ratios. Finally, the remaining notes are included. These notes involve intervals whose 
ratios necessarily depart from the Pythagorean ideals. In other words, a tempered 
scale is a compromise: it ensures that some intervals conform to the Pythagorean 
ratios but deforms other intervals to eliminate the Pythagorean comma.

One example of a tempered scale is called just intonation; it was explored by 
mathematicians of the early 17th century (Barbour, 1972). Just intonation produces 
consonant harmonies involving fifths and thirds, but at the same time can produce 
very dissonant harmonies for other musical intervals. Another example of a tem-
pered scale is called mean-tone temperament, which was invented by Pietro Aron 
in the early 16th century (Barbour, 1972). Mean-tone temperament distorts perfect 
fifths. This tuning favours thirds over fifths, which is the opposite of what is found 
in Pythagorean tuning (Donahue, 2005).

One problem with tempered scales is that they are defined with respect to a 
particular musical key (i.e., a particular starting frequency f). This means that the 
notes that define a scale in one musical key differ from those that define a scale 
in another. To perform the same piece in a different musical key (i.e., to musically 
transpose the composition), the instrument must be re-tuned. Another tempered 
scale, equal temperament, offered a solution to this problem.

Equal temperament, first mentioned by French philosopher, theologian, and 
mathematician Marin Mersenne in 1636, divides the octave into 12 equal segments, 
each representing the musical interval of a semitone. Equal temperament solves the 
problem of musical transposition because one can move a composition from key to 
key without having to re-tune an instrument. As a result, it became an ideal tuning 
for keyboard instruments (Isacoff, 2001, 2011).

However, equal temperament brought with it a new set of problems. By div-
iding the octave into 12 equal segments, it introduces irrational interval ratios. 
Consider some base pitch with frequency f. The pitch an octave higher has a 
frequency of 2f, or, to make an explicit link to the mathematics of equal temper-
ament, a frequency of 212/12f. In equal temperament the tone that is a semitone 
higher than f will have the frequency 21/12f, the tone two semitones higher 
than f will have the frequency 22/12f, and so on. The appearance of irrational 
ratios—defined as 2 raised to some x/12 power—had two negative consequences. 
First, calculating the desired frequencies—a requirement for actually tuning an 
instrument to equal temperament—was difficult. A number of specialized tools 
and methods had to be invented in the 18th century to deal with this problem 
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(Scimemi, 2002). Equal temperament existed as a theoretical notion for a long 
time before it became practical to use it to tune instruments in the late 19th 
century. Second, the presence of irrational ratios meant that many musical 
intervals deviated enough from the Pythagorean ideals to sound less consonant. 
Indeed, the distorted ratios found in any tempered scale challenge the Pythag-
orean notion of consonance, as does the new musical aesthetic that considers 
intervals like thirds to be consonant.

This latter issue raises a theoretical problem concerning music that was also 
a concern of mechanical philosophers. Cohen (1984) calls it the problem of con-
sonance. While the Pythagoreans identified particular frequency ratios as defining 
consonant musical intervals, they had no account of why this was so. The scientific 
revolution developed a very popular answer to this question that related consonance 
to the physical properties of sound. This answer is known as coincidence theory.

1.2.2 Coincidence Theory

In 1558, Gioseffo Zarlino explained the consonance of certain Pythagorean ratios 
with what is known as his scenario (Cohen, 1984). According to Zarlino, the con-
sonant Pythagorean ratios all involve the first six integers; the set of integers from 1 
to 6 defined the scenario. Zarlino proposed that any ratio of numbers that belonged 
to the scenario would be consonant, and supported this proposal with a variety of 
mystical arguments about why the members of the scenario were perfect num-
bers. In spite of this appeal to mysticism, coincidence theory was the most popular 
theory of consonance that emerged during this period (Cohen, 1984). It was then 
adopted, extended, and popularized by many leading figures of the scientific revo-
lution including Galileo, Mersenne, Descartes, and Euler.

Coincidence theory attempts to establish the physical basis of consonance 
(Cohen, 1984). It begins with the observation that a plucked string produces sound 
by striking or percussing the surrounding air. We hear sound when these percus-
sions reach our ears. Coincidence theory then recognizes that strings vibrating at 
different frequencies generate percussions at different rates. In some instances, the 
percussions generated by two different sound sources will reach the ears at the same 
time; these coincident percussions will be pleasing to the ear, or consonant. When 
the coincidence of percussions diminishes, so too will consonance. In other words, 
coincidence theory linked the purely mathematical view of consonance developed 
by the Pythagoreans to physical properties of sound vibrations, as they were under-
stood in the 16th and 17th centuries.
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1.3 Psychophysics of Music

The study of music during the scientific revolution produced new approaches to 
tuning and developed a theory that attempted to explain consonance in terms of 
coincident patterns of vibrations (Cohen, 1984). From this perspective, musical 
properties were physical properties of the world that could be studied scientifically 
and described mathematically. For instance, consonance was related to physical 
vibrations, and was not a construction of the mind.

1.3.1 Psychophysics

The systematic psychological study of consonance did not begin until the latter 
half of the 19th century; the golden age of this research occurred between 1840 
and 1910 (Hui, 2013). It was during this period that psychophysical explorations of 
music began.

Psychophysics was invented by Gustav Fechner, who began by searching for 
relationships between physical properties of stimuli and the properties of the 
experiences that they produced (Fechner, 1966/1860). The psychophysical study 
of music began with attempts to identify universal mathematical laws that related 
physical properties of sound and music to mental properties of musical experience 
(Hui, 2013).

To Hui (2013), the psychophysical study of sound sensation is in turn related 
to an understanding of musical aesthetics. Her general argument is that the 
psychophysical study of music involved a constant tension between universal 
psychophysical laws and individual aesthetic responses, a conflict that could only 
be resolved by acknowledging that psychological processes contribute to the experi-
ence of music. Crucially, this meant that the physical properties of sound were not 
the only determinants of such phenomena as consonance.

At the same time, new theories of tuning became practical realities. When 
psychophysicists began to study music, equal temperament was rising in popularity 
(Isacoff, 2001). In short, psychophysicists studied music at a time when radically new 
notions of consonance and dissonance were emerging. How could one reconcile a 
natural science of music or consonance with the many changes in music and musical 
preference arising in the latter half of the 19th century?

1.3.2 On the Sensations of Tone

One of the most influential accounts of musical psychophysics (Hiebert, 2014) was 
Hermann Helmholtz’s book On the Sensations of Tone as a Physiological Basis for 
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the Theory of Music (Helmholtz & Ellis, 1863/1954). Helmholtz wove three different 
threads together. One concerns the physics of sound, musical sound in particular, 
and includes details about various devices for sound production and measurement. 
A second concerns the physiology of hearing, and includes a detailed account of the 
structure and function of the cochlea and the basilar membrane. A third concerns 
the implications of the properties of sound, and the physiology of hearing, for the 
perception of music, and provides detailed discussions of different tunings and 
musical aesthetics.

The core idea that Helmholtz uses is a reinvention of coincidence theory. 
Coincidence theory focused on the relationship between two pure tones. Helm-
holtz recognized that in almost every case a musical instrument will not generate 
a pure sine wave with frequency f. Sympathetic vibrations add to this fundamental 
frequency additional sine waves at various frequencies defined by the octave (e.g., 2f, 
3f, 4f, and so on). These additional frequencies, called partials or harmonics, occur 
at weaker intensities than the fundamental, and tend to be weaker and weaker as 
the partial frequency becomes higher and higher. Helmholtz’s theory of consonance 
emphasized harmonic interference.

When two musical sounds occur together, not only do their fundamental fre-
quencies interact but their partials interact as well. For Helmholtz, interference 
patterns among all of the frequencies that are present cause the consonance of 
combined musical tones. Interference between partials would result in beats that 
produced an effect of roughness; consonant tones had little roughness; dissonant 
tones had more roughness because of more interference among partial frequencies. 
Importantly, these interference patterns affected the perception of music because 
they were detectable by the physiological mechanisms of hearing (Hui, 2013).

Helmholtz provided a detailed analysis of beat patterns related to a variety of 
musical intervals, and used this analysis to make fine-grained predictions about 
consonance. His quantitative account of consonance coincides with a variety of 
experimental studies of consonance conducted in the 20th century (Krumhansl, 
1990a). Helmholtz used his new theory of consonance to inform musical aesthetics 
and to defend his personal views on the beautiful in music. Helmholtz was a cham-
pion of just intonation (Hiebert, 2014; Hui, 2013) and was highly critical of the rising 
popularity of equal temperament. He believed that just intonation produced music 
that was far more consonant than was possible in equal temperament. Hui points 
out that Helmholtz makes the physiological argument that just intonation produces 
music more consistent with the physiology of hearing than is produced using equal 
temperament. However, Hui also notes that Helmholtz recognized that there were 
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individual differences in musical aesthetics. How was this to be reconciled with his 
detailed psychophysical theory?

Helmholtz argued that while his psychophysical account of the sensations of 
tone could inform the elementary rules of musical composition, these rules of com-
position are not natural laws. Different listeners were capable of enduring (and 
appreciating!) different degrees of roughness. Individual differences in musical tastes 
were a function of experience, culture, and education. One’s musical knowledge, 
culture, or experience could influence the aesthetic experience of consonance and 
dissonance.

1.3.3 Individual Contributions 

Helmholtz’s influential studies suggest that musical perception is only based in part 
on universal laws involving the physics of sound and the physiology of hearing. 
Music perception is also affected by aesthetic considerations that stem from an 
individual’s own culture, experience, and expertise. This position coincided with 
the tenets of musical Romanticism, which arose during the same era as musical 
psychophysics. Musical Romanticism emphasized individuality. That is, in Roman-
ticism individual composers aimed to communicate their personal emotions and 
imaginations; Romanticism also heralded the virtuoso instrumentalist (Longyear, 
1988). Informed by the theories of music critics like Eduard Hanslick (Hanslick, 
1854/1957), audiences began to carefully listen to music—not just to enjoy it but 
also to understand it (Hui, 2013). Such intellectual listening depends heavily upon 
an individual’s musical tastes and knowledge.

One consequence of psychophysicists accepting that an individual’s mind or 
knowledge greatly affects musical perception is the need to discover the psych-
ological laws that govern these influences. This research goal is central to the 
cognitive study of music that began in the middle of the 20th century. The cogni-
tive approach recognized that there could exist abstract laws governing perception 
and thinking, but these laws are in turn linked to physical mechanisms. In the next 
section, we briefly introduce this cognitive approach and then describe the kinds 
of theories it produced to account for musical perception.

1.4 From Rationalism to Classical Cognitive Science

1.4.1 Rationalism

Mechanical philosophy was not only interested in explaining the natural world but 
also in explaining the mind, as exemplified in the 17th century philosophy of René 
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Descartes (Descartes, 1637/2006, 1641/1996). To establish a rigorous philosophy, 
Descartes adopted the mathematical approach of derivation from axioms. The basis 
of his philosophy was the axiom that he was a thinking thing: “A thing that doubts, 
understands, affirms, denies, is willing, is unwilling, and also imagines and has 
sensory perceptions” (p. 19). Cartesian philosophy proceeded by using this axiom to 
prove the existence of a perfect God who would not deceive, and then to establish 
the existence of an imperfectly sensed external world. As this philosophy derives 
new truths from axioms, we know it as rationalism. Cartesian philosophy has con-
tinued to inspire the study of mind centuries after its invention. In particular, it 
provides the philosophical foundations for modern cognitivism.

1.4.2 Cognitivism

For most of the first half of the 20th century, experimental psychology was domin-
ated by an approach called behaviourism (Boring, 1950; Leahey, 1987). Behaviourism 
focused on investigating mechanistic links between observables—observable 
environmental stimuli and observable responses to these stimuli from organisms. 
Behaviourists strove to exclude elements that could not be directly observed (such 
as internal mental states) from their theories.

The 20th century invention of the digital computer made possible a new 
approach to studying psychology—cognitivism. Cognitivism reacted against behav-
iourism. In explaining the operations of a digital computer, one typically appeals 
to internal (and directly unobservable) states: the information represented inside 
the computer’s memory (the symbols) and the operations used to manipulate this 
internal information (the rules). Cognitive psychology explored the hypothesis that 
thinking was identical to the operations of a digital computer. That is, cognitivism 
hypothesized that cognition is literally the rule-governed manipulation of mentally 
represented information.

Inspired by the digital computer, what is now known as classical cognitive sci-
ence is a modern descendant of Cartesian philosophy (Dawson, 1998, 2013; Dawson, 
Dupuis, & Wilson, 2010a). In viewing thought as analogous to the rule-governed 
operations of a digital computer, classical cognitive science is a modern variant 
of viewing thinking as analogous to axiomatic derivations. In accordance with 
mechanistic philosophy’s affinity for mathematics, and with Descartes’s axiomatic 
philosophy, classical cognitive science often uses mathematics or logic to investigate 
cognitive phenomena (Dawson, 1998).

Nineteenth-century psychophysics is also a precursor to modern cognitivism. 
Helmholtz argued that hearing served to build internal representations of the world. 
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That is, the result of audition is to produce “mental images of determinate external 
objects, that is, in perceptions” (Helmholtz & Ellis, 1863/1954, p. 4). Behaviourism, 
in contrast, attempted to expunge mentalistic terms from its vocabulary (Watson, 
1913). Behaviourism rejected using mentalistic terms like “unconscious inference” 
or “mental image”—terms that were central to Helmholtz.

1.5 Musical Cognitivism

1.5.1 Active Musical Processing

It has been argued that the study of music offers the strongest challenge against 
psychological behaviourism (Serafine, 1988). In Serafine’s view, the creation and 
appreciation of new compositions, or of new musical styles, is unexplainable in 
terms of behavioural reinforcement. It instead demands a representational theory. 
For this reason, behaviourist accounts of the psychology of music are nonexistent. 
When behaviourism dominated psychology, musical psychologists were not as 
interested in explaining musical perception as they were in designing tests to 
measure individual differences in musical ability (Larson, 1930; Seashore, 1915, 1936, 
1938/1967; Stanton & Seashore, 1935).

What is a fundamental difference between cognitive theories that appeal to 
mental representations and those, such as behaviourism, which do not? According 
to the psychology texts that emerged after the cognitive revolution in the latter 
half of the 20th century (Lindsay & Norman, 1972; Neisser, 1967; Reynolds & Flagg, 
1977), the key difference is active processing. Cognitivists argued that behaviourism 
treated organisms as passive responders to the environment (Bertalanffy, 1967, 1969). 
In contrast, cognitivism assumed “a constantly active organism that searches, filters, 
selectively acts on, reorganizes and creates information” (Reynolds & Flagg, 1977, p. 
11, their italics). For some, cognitivism was revolutionary not because it proposed 
representations but because it proposed active information processing.

According to classical cognitivism, organisms are active processors that first 
receive information from the environment, and then organize this information into 
representations of the world that can be used to think and plan, and finally perform 
some action on the world based upon this thinking and planning (Dawson, 2013). In 
other words, our experience of the world results from combining the information 
that we receive about the world with our existing beliefs, desires, and knowledge. 
Thus, modern cognitivism not only embraces the individual differences revealed by 
the psychophysical study of music (Hui, 2013), but also attempts to develop scientific 
theories of an individual’s cognitive contributions to experience.
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With the invention of new information-processing technology and new experi-
mental methods, cognitivism went far beyond the psychophysical tradition of the 
19th century. Modern cognitivists were not content to merely appeal to vague 
notions like unconscious inference. Instead, they were obligated to determine the 
nature of mental representations, as well as the kinds of rules used to manipu-
late them (Chomsky, 1965; Dutton & Starbuck, 1971; Feigenbaum & Feldman, 1995; 
Newell & Simon, 1972; Winston, 1975).

Unsurprisingly, the cognitive revolution has produced many important rep-
resentational theories of music cognition (Cook, 1999; Deliège & Sloboda, 1997; 
Deutsch, 1982, 1999, 2013; Francès, 1988; Howell, Cross, & West, 1985; Krumhansl, 
1990a; Lerdahl, 2001; Lerdahl & Jackendoff, 1983; Sloboda, 1985; Snyder, 2000; Tem-
perley, 2001). In general, cognitive theories of music propose that musical perception 
involves organizing musical stimuli using existing mental representations. Musical 
cognitivists aim to explain the nature of musical representations, as well as the 
processes that manipulate these representations. The remainder of this section 
provides two examples to illustrate how classical cognitive scientists study music. 
We will see that these two topics will be important in later chapters when we begin 
to examine the musical regularities that artificial neural networks exploit.

1.5.2 The Tonal Hierarchy

Carol Krumhansl’s investigations of the cognitive foundations of musical pitch 
provide a prototypical example of the representational approach to music cognition 
(Krumhansl, 1990a). Her research goal concisely defines classical cognitive science’s 
perspective on music cognition: “to describe the human capacity for internalizing 
the structured sound materials of music by characterizing the nature of internal 
processes and representations” (Krumhansl, 1990a, p. 6).

To accomplish this goal, Krumhansl (1990a) makes a number of design decisions 
to choose from the vast possibilities available in terms of the musical stimuli to use, 
the musical responses to observe, and the choice of subjects to study, not to mention 
the description, analysis, and modelling of experimental results. After considering 
these possibilities, Krumhansl decides to explore cognitive representations of the 
pitch-classes used to define Western tonal-harmonic music.

Several factors guide this decision. First, even though musical pitch is related to 
a continuous physical property (sine wave frequency) and is therefore in principle 
infinitely variable, Western tonal music is experienced as involving only 12 different 
pitch-classes (Révész, 1954). This leads to the principle of octave equivalence (Forte, 
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1973; Patel, 2008; Roig-Francolí, 2008; Straus, 2005), which assigns pitches separated 
by multiples of an octave to the same pitch-class.

Second, even though the set of pitch-classes is very small, it serves as the foun-
dation of Western tonal music. One can use combinations of pitch-classes to define 
complex musical objects. For instance, by using pairs of pitch-classes one can define 
musical intervals. By combining two or more musical intervals (e.g., by using three 
or four pitch-classes) one can define chords. A combination of seven pitch-classes 
defines a musical key that is built around a tonic note (one of the pitch-classes) and 
is associated with a particular sonority called its mode (which in Western music 
is typically either major or minor). In short, an understanding of the cognition of 
pitch should provide the foundation for an understanding of the cognition of more 
complex musical stimuli.

Third, while one constructs complex musical stimuli by combining pitch-classes 
together, there are powerful constraints on such combinations. Not every pitch-class 
combination in music is equally likely. In particular, consonant combinations are 
far more likely than dissonant combinations. Furthermore, establishing a particu-
lar tonality—a critical characteristic of Western music—requires that a subset of 
pitch-classes is more likely to be present in a composition, while at the same time 
the remaining pitch-classes are less likely to occur. In addition, if one only considers 
the to-be-included pitch-classes then some are more likely to occur than others 
are. In short, the cognition of Western tonal music attends to various relationships 
between pitch-classes, and one can explore these relationships by studying reactions 
to a very manageable stimulus set (i.e., the 12 pitch-classes).

Krumhansl’s basic method for studying the cognition of musical pitch is called 
the probe tone method (Krumhansl & Shepard, 1979). The probe tone method 
involves a series of musical trials. On any given trial a musical context is established 
(e.g., by playing part of a musical scale, a chord, or some other musical stimulus). 
Then a single probe note—one of the pitch-classes—is played. A subject’s task is to 
rate how well the probe note is related to the musical context. Typically, subjects 
make this rating on a seven-point scale where a rating of one indicates a very bad 
relationship, a rating of four indicates a moderate relationship, and a rating of seven 
indicates a very good relationship. Variations of this general paradigm permit sub-
jects to make judgments about more complex musical stimuli (Krumhansl, 1990a).

The probe tone method reveals systematic relationships between pitch-classes 
within a particular musical context (e.g., a specific musical key). After establishing 
a musical key, the pitch-class given the highest rating of relationship to the context 
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is the tonic of the key. For example, if the musical context establishes a key of A 
major, then the pitch-class A receives the highest rating, as is illustrated in Figure 1-1.

Figure 1-1 An illustration of “relatedness ratings” for each pitch-class in the 
context of the musical key A major.

The tones that receive the next highest ratings are those that belong in the third 
or fifth positions of the musical scale that defines the musical key. For the key of 
A major, these are the pitch-classes C♯ and E (see Figure 1-1). Receiving yet lower 
ratings are the remaining four pitch-classes that belong in the key’s musical scale. 
For the key of A major, these are the pitch-classes B, D, F♯, and G♯. The pitch-classes 
not found in the key’s scale elicit the lowest ratings. For the key of A major, these 
are the pitch-classes A♯, C, D♯, F, and G (see Figure 1-1).

The set of relationships between the 12 pitch-classes and a particular musical 
key is called the tonal hierarchy (Krumhansl, 1990a). If one changes the musical 
key, then one finds the same general pattern of ratings, but they are associated with 
different pitch-classes. For example, in the key of A major C♯ receives a very high 
rating, while C receives a very low rating (see Figure 1-1). However, in the key of C 
major C♯ receives the lowest rating while C receives the highest. In other words, 
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each musical key is associated with its own tonal hierarchy (i.e., with a specific set 
of pitch-classes receiving high, moderate, low, and lowest ratings).

Krumhansl (1990a) has used the tonal hierarchies associated with different 
musical keys to explore higher-order relationships among musical keys. If two dif-
ferent keys are similar to one another, then their tonal hierarchies should be similar 
as well. In one study, the correlations between tonal hierarchies were calculated 
for every possible pair of the 12 different major and 12 different minor musical keys 
(Krumhansl & Kessler, 1982). Then a graphic representation of the similarity rela-
tionships between musical keys was determined by using multidimensional scaling 
to convert the correlations into a multidimensional map. In this map, a different 
point represents each key; points representing similar musical keys are nearer to 
one another in the map. Krumhansl and Kessler discovered that a four-dimensional 
map provided the best representation of the similarity data. This map arranged the 
keys in a spiral that wrapped itself around a toroidal surface.

The spiral arrangement of notes around the torus reflects elegant spatial rela-
tionships among tonic notes related to a standard device in music theory called the 
circle of fifths (Krumhansl, 1990a; Krumhansl & Kessler, 1982). The circle of fifths 
arranges the 12 pitch-classes around a circle; pitch-classes that are adjacent in the 
circle are a musical interval of a perfect fifth (seven semitones) apart. In the map 
discovered by Krumhansl and Kessler, the nearest neighbours for any key along the 
torus were its neighbouring keys in the circle of fifths. For instance, the nearest 
neighbours along the torus to the point representing the key of A major were the 
points for the keys of E major and D major. These two pitch-classes are on either 
side of A in the circle of fifths.

Krumhansl (1990a) summarizes a great deal of evidence in support of the tonal 
hierarchy as well as other organizational principles for music cognition. The tonal 
hierarchy is not a musical property per se, but is instead a psychologically imposed 
organization of musical elements. “The experience of music goes beyond registering 
the acoustic parameters of tone frequency, amplitude, duration, and timbre. Pre-
sumably, these are recoded, organized, and stored in memory in a form different 
from sensory codes” (Krumhansl, 1990, p. 281).

From Krumhansl’s (1990a) classical perspective, music cognition is a dynamic 
process in which mental representations relate musical sounds to one another and 
establish hierarchical relationships involving pitches, musical keys, intervals, and 
chords. The melodic, harmonic, and tonal roles of musical events are being continu-
ously interpreted, organized, and structured. Importantly, these cognitive processes 
reflect the contributions of the individual to his or her own musical perceptions, 
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contributions that were of great concern to psychophysical researchers (Hui, 2013) 
but which they did not explain in detail.

1.5.3 The Tritone Paradox

Krumhansl’s (1990a) tonal hierarchy provides one prototypical example of how 
mental representations can explain musical cognition. The musical illusion called 
the tritone paradox provides another example. Below I will introduce the tones used 
to create this illusion, describe the illusion itself, and then provide a representational 
explanation of why the tritone paradox occurs.

The arrangement of the keys on a piano reveals two different properties. First, 
pitch ascends linearly from left to right along the keyboard. That is, after you play 
a note by pressing one of the piano keys, if you press the key immediately to its left, 
you will play a note that is a semitone lower; if you press the key immediately to its 
right, you will play a note that is a semitone higher. Second, pitch-class (the name 
of the note associated with any piano key) is arranged circularly. This is because 
the relationships between note names repeat themselves along the keyboard. For 
instance, find any key on the piano that plays an A. Its nearest neighbour to the left 
will be a key that plays a G♯; its nearest neighbour to the right will be a key that 
plays an A♯.

If you wished to use a single graph to depict these two relationships, then you 
would likely use a three-dimensional spiral like the one illustrated in Figure 1-2 
(Deutsch, 2010). The vertical dimension of the spiral represents pitch. As you move 
upward from the bottom of this spiral toward the top, pitch gets higher. As a result, 
for any note in this spiral the note on one side will be higher in height (representing 
a pitch that is a semitone higher), while the note on the other side will be lower 
(representing a pitch that is a semitone lower).

In contrast, horizontal position around the spiral represents pitch-class rela-
tionships. No matter where you are in the spiral, one pitch-class will have the same 
neighbours. For instance, an A♯ will always have an A on its one side and a B on 
its other along the helix. Indeed, position in the horizontal dimension around the 
spiral is a reliable indicator of pitch-class. Imagine that the spiral in Figure 1-2 wraps 
itself around a cylinder. Every instance of one pitch-class is vertically aligned at 
the edge of this cylinder. For instance, the three different instances of A in Figure 
1-3 are all stacked in the same column along the edge of an imaginary cylinder. In 
other words, position around the horizontal “circular dimension” of the Figure 1-2 
spiral encodes pitch-class.
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Figure 1-2 A three-dimensional spiral can simultaneously capture the linear 
arrangement of pitch and the circular arrangement of pitch-class on a piano 
keyboard.

Psychologist Roger Shepard reasoned that if he could eliminate the pitch 
dimension of music (e.g., if one were to compress the Figure 1-2 spiral to remove 
its height, so that all note names would fall around a single circle), then he could 
create an interesting musical illusion (Shepard, 1964). He used computer-generated 
sounds, now called Shepard tones, to test this hypothesis. A Shepard tone is a 
musical sound whose components all belong to the same pitch-class. For instance, 
a Shepard tone for the pitch-class A may be built from seven different pitches of 
A (e.g., A1, A2, A3, A4, A5, A6, and A7; where A4 is the A above middle C on the 
piano, A5 is the A that is an octave higher than A4, and A3 is the A that is an octave 
lower than A4). However, the loudness of each Shepard tone component decreases 
rapidly, moving in either direction away from the Shepard tone’s central compon-
ent. If one constructs a tone in the manner described above, the result is a sound 
that, when heard, specifies a particular pitch-class but does not clearly indicate the 
octave of the note being heard.

Shepard (1964) found that the Shepard tones produced a marked illusion of 
musical circularity. When Shepard presented 12 tones (one for each pitch-class) in 
sequence (e.g., A, A♯, B, C, D, D♯, E, F, F♯, G, and G♯), and then continued to repeat 
the sequence, listeners reported a definite linear progression of pitch. That is, sub-
jects could hear successive notes increasing in pitch, with the current sound being 
a higher pitch than the one that preceded it. However, the experience puzzled the 
listeners. Some wondered why the pitch was increasing but did not really seem to 
get higher. “Some subjects were astonished to learn that the sequence was cyclic 
rather than monotonic and that in fact it repeatedly returned to precisely the tone 
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with which it had begun” (Shepard, 1964, p. 2349). Shepard himself compared these 
auditory effects to the circular staircase illusions in the artwork of Maurits Escher.

Diana Deutsch used Shepard tones to discover another musical illusion called 
the tritone paradox (Deutsch, 1986, 1987, 1991). In this illusion, listeners hear pairs of 
Shepard tones and must judge whether the first or the second member of each pair 
has the higher pitch. In Deutsch’s paradigm, the pitch-classes in each pair are sep-
arated by a musical interval called a tritone. If two pitches are a tritone apart, then 
they are six semitones apart, or separated by exactly half an octave. For example, A 
and D♯ are separated by a tritone, as are B and F.

Interestingly, the tritone paradox emerges by comparing the judgments of dif-
ferent subjects. For instance, one subject might judge that an A has a higher pitch 
than a D♯. However, a different subject might make exactly the opposite judgment 
from the same stimulus. “This demonstration is particularly striking when played 
to a group of professional musicians, who are quite certain of their own judgments 
and yet recognize that others are obtaining entirely different percepts” (Deutsch, 
2010, p. 13).

How can one explain the tritone paradox? Deutsch (2010) proposes an elegant 
theory consistent with classical cognitive science. She suggests that pitch-class is 
represented by arranging pitch-classes around a circle that makes explicit the neigh-
bourhood relations between pitch-classes. She further proposes that some notion 
of pitch height is also encoded in this representation. As a result, pitch-classes 
that fall on one side of this circular representation are judged higher in pitch than 
pitch-classes that fall on the other side of the circle.

This is illustrated in Figure 1-3. The top part of this figure arranges pitch-classes 
around a circle of minor seconds, so that neighbouring pitch-classes are a semitone 
apart. (This is identical to the neighbourhood relationship between note names 
found on a piano keyboard.) Pitch-classes joined by a diagonal through this circular 
arrangement are a tritone apart (e.g., C and F♯). In addition, a dashed line divides 
this representation into two, so that pitch-classes that fall above the dashed line are 
judged to have a higher pitch than pitch-classes that fall below the dashed line. The 
top part of Figure 1-3 illustrates a representation in which causes C to be judged to 
have a higher pitch than F♯.

However, Deutsch points out that there is no reason for there not to be indi-
vidual differences in the orientation of this circle of pitch-classes. For instance, the 
bottom part of Figure 1-3 provides the same circular representation of pitch-classes, 
but it has been rotated 180° around the centre when compared to the top circle in 
the figure. As a result, different pitch-classes fall above the dashed line. A listener 
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using the bottom representation of pitch-class would judge F♯ higher than C, which 
is opposite to the judgment obtained using the upper representation in the figure.

Figure 1-3 Using circles of minor seconds to explain the tritone paradox.

The tritone paradox, and Deutsch’s explanation of this effect, provides a proto-
typical illustration of the classical approach to musical cognition. First, the physical 
properties of the musical stimulus are not sufficient to explain how it is experienced. 
For example, in the tritone paradox two different listeners can be presented exactly 
the same stimulus but have opposite experiences of it. As a result, an account of this 
phenomenon requires an appeal to internal processing of the external stimulus that 
produces the listener’s final experience.

Second, the account of the tritone paradox depends on the properties of par-
ticular kinds of mental representations. When a listener hears a particular tone, the 
tone is mapped onto the particular location of a circle of pitch-classes like those 
illustrated in Figure 1-3. However, this circle of pitch-classes makes explicit other 
properties as well—in particular, the relative heights of different pitch-classes.

It is this additional information from the representation that results in the 
listener hearing a specific stimulus as having a lower pitch than the other has. 
Individual differences in a general property of this kind of representation (e.g., its 
orientation) explain individual differences in musical experiences. As was the case 
with Krumhansl’s (1990a) tonal hierarchy, Deutch’s explanation of the tritone para-
dox appeals to regularities governing representations but can also explain individual 
differences in these representations. Again, musical cognitivism’s emphasis on active 
information processing embraces and explains the individual differences in percep-
tion that emerged from the psychophysical study of music (Hui, 2013).

 

A

A#

G#

F

C
C#

D

D#

E

B

G
F#

A

A#

B
C

C#

D

D#

E

FG

G#

F#

Higher

Lower



doi: 10.15215/aupress/9781771992206.01

26 Connectionist Representations of Tonal Music

1.6 Summary

The purpose of this chapter was to provide a historical overview of the science of 
music and to use this overview as a context for modern cognitivism. The chapter 
started with the perspective on music that began with the ancient Greeks, and which 
then flourished in the natural philosophy of the Enlightenment. According to this 
perspective, music was an attribute consistent with the perfect structure of nature, 
and all of its properties could be elegantly explained using mathematics. However, as 
natural philosophy matured, it made discoveries that challenged this view of music. 
In particular, the mathematical perfection of music was not reflected in various 
theories of consonance or of tuning. In the 19th century, other factors affected the 
account of music that mechanical philosophy held. In particular, changes in musical 
aesthetics as part of the rise of Romanticism, combined with discoveries of the new 
musical psychophysics, contradicted the view that music could be explained purely 
in terms of its mathematical or physical properties. In the latter half of the 19th 
century, it became clear that explanations of musical experience required appeals to 
the beliefs and cultures of individual listeners in addition to the physical properties 
of sound. Music was not merely physical: it was psychophysical.

The rise of cognitivism in the 20th century continued the tradition of explain-
ing the perception and experience of music by appealing in part to psychological 
contributions of the listener. Classical cognitivism’s approach to studying music 
represents a modern blending of the various traditions introduced in the current 
chapter. Like mechanical philosophy, musical cognitivism explains musical percep-
tion by appealing to formal or mathematical constructs. This is evident in its appeal 
to the rule-governed manipulation of mental representations. Like early musical 
psychophysics, musical cognitivism recognizes that perception of music depends on 
the interaction between the physical properties of acoustic stimuli and the organiz-
ational role of mental representations. This permits the study of musical cognition 
to appeal to scientific laws but also to be sensitive to individual differences. In short, 
musical cognitivism is an approach that is deeply rooted in natural philosophy but 
at the same time inspired by modern developments like the digital computer. In 
particular, musical cognitivism is primarily interested in identifying the nature 
of mental representations of music and the nature of the rules or operations that 
manipulate these representations in order to produce our musical experience.

However, the classical approach, inspired by the digital computer, is not the 
only school of thought in modern cognitivism (Dawson, 2013). Artificial neural 
networks form the basis of another, called connectionist cognitive science, which 
challenges some of the core assumptions of the classical approach. In addition, there 
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is a growing interest in connectionist cognitive science in using artificial neural net-
works to capture some informal aspects of musical cognition, informal properties 
hypothesized to be beyond the reach of classical musical cognitivism. The purpose 
of this book is to explore some aspects of connectionist musical cognitivism; the 
next chapter provides an introduction to this general approach, as well as to the 
methodology employed in later chapters.





 29

doi: 10.15215/aupress/9781771992206.01

2

Artificial Neural Networks and Music

2.1 Some Connectionist Basics

2.1.1 Artificial Neural Networks

When classical cognitive science arose in the 1950s, it viewed cognition as being the 
rule-governed manipulation of symbols, analogous to the operations of a digital 
computer or to the definition of a formal logic. The view that thinking is performing 
a sort of mental logic is called logicism (Oaksford & Chater, 1991, 2007). Logicism, 
in the form of classical cognitive science, had many early and compelling successes, 
particularly in the computer simulation of higher-order cognition (Feigenbaum & 
Feldman, 1995; Newell & Simon, 1972).

However, while classical theorists promised that thinking machines were on the 
horizon, these promises were continually being broken. Some researchers began 
to question the foundations and the potential of classical cognitive science (Drey-
fus, 1972, 1992). In particular, some challenged the notion that cognition is the 
rule-governed manipulation of symbols. Arguments arose that while the brain was 
likely an information processor, it was unlikely to be similar to a digital computer. 
As a result, some cognitive scientists adopted models of information processing 
that are more biologically plausible. These cognitive scientists are known as con-
nectionists. In the mid-1980s, connectionist cognitive science arose as a reaction 
against its logicist ancestor.

Connectionist cognitive scientists employ artificial neural networks as models of 
human information processing (Dawson, 2004, 2005). An artificial neural network 
is a computer simulation of interconnected processing units. Each processing unit 
is analogous to a neuron and behaves as follows: First, it computes the total signal 
that it is receiving from other processors in the network. Second, the processor 
converts this total signal into some level of internal activity. Third, the processor 
unit sends its internal activity on to other processors. All of these operations are 
mathematical: signals and processor activities are all numbers that are determined 
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by simple mathematical equations. In addition, these operations are parallel: many 
different processing units can be operating at the same time.

If processors in a PDP (Parallel Distributed Processing) network are analogous to 
neurons, then connections between processors are analogous to synapses between 
neurons. Each connection in a network has an associated weight (a numerical value) 
that indicates the connection’s strength, as well as whether it is excitatory (positive 
weight) or inhibitory (negative weight). The connection is a communication channel 
that modifies a numerical signal sent through it by multiplying the signal by the 
connection’s weight. In general, an artificial neural network has layers of processing 
units; signals pass through weighted connections from one layer to the next. The 
function of a typical network is to generate a desired response to a stimulus. The 
stimulus (e.g., a signal from the environment) is encoded as a pattern of activity in 
a layer of input units. The network’s response to the stimulus is represented as a 
pattern of activity in its layer of output units. Intervening layers of processors in the 
system, called hidden units, detect more complex stimulus features.

Figure 2-1 provides an example of a musical artificial neural network. This net-
work consists of 12 input units (the circles at the bottom of the figure), seven hidden 
units (the circles in the middle of the figure), and 12 output units (the circles at the 
top of the figure). Each line between circles in Figure 2-1 represents a weighted 
connection from one processor to another. In this network, each input unit has 
a connection to each hidden unit, and each hidden unit has a connection to each 
output unit. There are no direct connections between input and output units. This 
particular network is an example of a chord progression network that will be dis-
cussed later in this book. It is presented one chord from a musical sequence and 
responds with the next chord in the sequence. When a chord is presented to the 
input units (in this case by activating four pitches, B, C, E, and G, shown in grey in 
the figure), signals are sent through its layers producing responses in the output 
units. In Figure 2-1, the output units shaded in grey have turned on to the stimulus, 
while the unshaded output units remain off. Musically speaking, Figure 2-1 illus-
trates a network that has been presented a C major seventh (Cmaj7) chord and has 
responded with a C minor seventh (Cmin7) chord.

Figure 2-1 provides an example of one type of artificial neural network. There 
are many different types of networks, including distributed associative memories, 
feedforward networks, recurrent networks, and self-organizing maps (Amit, 1989; 
Anderson, 1995; Bechtel & Abrahamsen, 2002; Dawson, 2004; Gluck & Myers, 2001; 
Grossberg, 1988). Within each of these network types one finds many different 
variations, including different learning rules, numerous functions for computing 
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incoming signals, various methods for computing processor activity, and so on. In 
other words, the domain “artificial neural network” is wide and varied. The current 
book explores a small subset of these possible network types in the context of music.

Figure 2-1 An example artificial neural network that, when presented a stimulus 
chord, responds with another chord.

2.1.2 Teaching Networks

How might a network like the one illustrated in Figure 2-1 “know” what chord to 
respond with when it is presented a stimulus? An artificial neural network’s pattern 
of connectivity—its set of connection weights—defines its response to a stimulus. 
As a result, this pattern of connectivity is analogous to a computer program. How-
ever, one does not program artificial neural networks in any conventional sense. 
Instead, one teaches them. Networks receive a sequence of input patterns, and 
learn, by adjusting their connection weights, to produce the correct responses to 
presented patterns.
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Typically, when a network is trained to classify patterns, it is presented a set of 
input patterns for which desired responses are already known. That is, each stimulus 
is associated with a desired response, and the goal is to train a network so that it 
generates this desired response for each pattern in the training set. To accomplish 
this, a supervised learning algorithm is used to train the network.

Supervised learning in general proceeds as follows: We start with a network 
whose connection weights are given small, random initial values. We present one 
of the training patterns to the network; it generates a response to this pattern using 
its current connection weights. Early in learning, because the network is started 
randomly, we expect its responses to be highly inaccurate. We can measure this 
inaccuracy by comparing the desired response for each output unit (the response 
that we want) to the observed response (the actual response generated by the net-
work to the stimulus). We do so by taking the mathematical difference between 
the desired and observed responses. This difference is the error of an output unit.

Once error has been computed, it is used to modify connection weights in order 
to reduce network error. That is, after changing connection weights, the next time 
the same pattern is presented to the network the network will generate less error 
in response to it. There is a variety of different learning rules that can be used to 
train artificial neural networks (Bishop, 1995; Caudill & Butler, 1992; Grossberg, 
1988; Ripley, 1996; Rojas, 1996; Shepherd, 1997). For networks that include hidden 
units, the error computed for each output unit must be sent backward through 
the network in order for hidden unit error to be determined, and for hidden unit 
connection weights to be modified (Rumelhart, Hinton, & Williams, 1986; Rumel-
hart & McClelland, 1986b). For all of the various supervised learning rules, there is 
one common feature: each time connection weights are modified network errors 
decrease. The goal is to reduce network error, with enough training, to a magnitude 
that is small enough to say that the network has learned the correct response to 
each of the training stimuli.

2.1.3 What Can Networks Do?

A connectionist network is a computer simulation that converts an input pattern 
into an output response. What kind of stimulus-response mappings can artificial 
neural networks learn to generate?

One common task is pattern recognition (Lippmann, 1989; Pao, 1989; Ripley, 
1996). When a network performs pattern recognition, it identifies its input pattern 
as belonging to a particular class. For instance, one might present a network a set 
of musical notes that the network could then classify as representing a particular 
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type of musical chord (Yaremchuk & Dawson, 2005). The Figure 2-1 network can 
be considered a pattern recognition system, because it generates a discrete or cat-
egorical response to a stimulus.

Another task that connectionist networks can accomplish is function approxi-
mation (Siegelmann, 1999; Takane, Oshima-Takane, & Shultz, 1994). In a function 
approximation task, a network maps an input pattern into a continuous output 
response. In general, the input units represent the values of one or more x-variables, 
and the output unit(s) represents some function of these variables. That is, the net-
work computes a function y = f(x1, x2, . . . xn) where an output unit represents the 
value of y. For instance, later we will discuss a network that is presented a summary 
of the notes in a particular song, and generates the probability that the song is writ-
ten in a particular key. Pattern recognition and function approximation are two very 
general tasks that artificial neural networks can accomplish very well. As a result, 
connectionist models have arisen in a variety of different research domains, includ-
ing perception (Carpenter & Grossberg, 1992; Wechsler, 1992), language (Mammone, 
1993), brain function (Amit, 1989; Burnod, 1990; Gluck & Myers, 2001), and animal 
learning (Dawson, 2008; Enquist & Ghirlanda, 2005; Schmajuk, 1997).

Connectionist models have also been applied to a wide variety of problems in 
music and in musical cognition (Bharucha, 1999; Fiske, 2004; Griffith & Todd, 1999; 
Todd & Loy, 1991). A variety of network architectures have been applied to such 
topics as classifying pitch and tonality, assigning rhythm and metre, classifying and 
completing melodic structure, and composing new musical pieces. Let us briefly 
consider some examples of musical connectionism.

Connectionist networks can accomplish a variety of tasks that require classi-
fication of basic elements of Western music (e.g., pitch, tonality, and harmony). 
Artificial neural networks have been trained to classify chords (Laden & Keefe, 1989; 
Yaremchuk & Dawson, 2005, 2008), to assign notes to structures similar to the 
tonal hierarchy (Leman, 1991; Scarborough, Miller, & Jones, 1989), to model the 
effects of musical expectations on musical perception (Bharucha, 1987; Bharucha 
& Todd, 1989), to add harmony to melodies (Berkeley & Raine, 2011; Shibata, 1991), 
to determine the musical key of a melody (Griffith, 1995), to identify a melody even 
when it has been transposed into a different key (Benuskova, 1995; Bharucha & 
Todd, 1989; Page, 1994; Stevens & Latimer, 1992), and to detect the chord patterns 
in a composition (Gjerdingen, 1992).

Artificial neural networks can also model some perceptual illusions involving 
pitch. One example is virtual pitch (Terhardt, Stoll, & Seewann, 1982a, 1982b). In 
this illusion, one constructs a musical signal from a combination of sine waves (i.e., 
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harmonics) but does not include the lowest-frequency sine wave, the fundamental 
frequency. The fundamental frequency determines the pitch of the tone (i.e., the 
octave in which the pitch is experienced). Human listeners, however, do not hear 
a tone missing its fundamental frequency in a different octave. Instead, they hear 
the tone in the correct octave, as if the missing fundamental frequency is put back 
into the stimulus (Fletcher, 1924). Certain types of artificial neural networks can use 
context (i.e., the presence of harmonic sine waves) to add the missing fundamental 
(Benuskova, 1994; Sano & Jenkins, 1989).

Artificial neural networks can also handle other important aspects of music that 
are independent of tonality, such as assigning rhythm and metre (Desain & Honing, 
1989; Griffith & Todd, 1999). For example, one network for assigning rhythm and 
metre uses a system of oscillating processors—units that fire at a set frequency 
(Large & Kolen, 1994). The phase of an oscillator’s frequency can vary, and signals 
between processors enable their phases to entrain. This permits the network to rep-
resent the metrical structure of a musical input, even if the actual input is noisy or 
imperfect. This notion can be elaborated in a self-organizing network that permits 
preferences for, or expectancies of, certain rhythmic patterns to determine the final 
representation that the network converges to (Gasser, Eck, & Port, 1999).

The examples cited above generally involve using artificial neural networks to 
detect properties of existing music. The ability of networks to process tonality, har-
mony, metre, and rhythm also permits them to generate new music. Composition 
has in fact been one of the most successful applications of musical connec-
tionism. Networks can compose single-voiced melodies on the basis of learned 
musical structure (Mozer, 1991; Todd, 1989); can compose harmonized melodies or 
multiple-voiced pieces (Adiloglu & Alpaslan, 2007; Bellgard & Tsang, 1994; Hoover 
& Stanley, 2009; Mozer, 1994); can improvise when presented new jazz melodies and 
harmonies (Franklin, 2006); and can improvise by composing variations on learned 
melodies (Nagashima & Kawashima, 1997).

The logic of network composition is that the relationship between successive 
notes in a melody, or between different notes played at the same time in a harmon-
ized or multiple-voiced piece, is not random, but is instead constrained by stylistic, 
melodic, and acoustic constraints (Huron, 2006; Kohonen, Laine, Tiits, & Torkkola, 
1991; Lewis, 1991; Mozer, 1991, 1994; Temperley, 2007). Networks can learn these 
constraints and then use them to generate the next note in a new composition.

The ability of artificial neural networks to exploit similarity relationships 
positions them to capture regularities that are difficult to express in language or 
using formal rules (Loy, 1991). This permits networks to solve musical problems 
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that involve very abstract properties. For example, human subjects can accurately 
classify the genre or style of a short musical selection within a quarter of a second 
(Gjerdingen & Perrott, 2008). The notion of style or genre is too vague to be formal-
ized in a fashion suitable for a classical rule-governed system (Loy, 1991). However, 
neural networks are up to the task, and can: classify musical patterns as belonging 
to the early works of Mozart (Gjerdingen, 1990); classify selections as belonging to 
different genres of Western music (Mostafa & Billor, 2009); evaluate the affective 
aesthetics of a melody (Cangelosi, 2010; Coutinho & Cangelosi, 2009; Katz, 1995); 
and even predict the possibility that a particular song has “hit potential” (Monterola, 
Abundo, Tugaff, & Venturina, 2009).

Artificial neural networks have musical applications that extend beyond human 
cognition. For instance, with the wide availability of digital music, networks are 
proving to be useful in serving as adaptive systems for selecting music, or gener-
ating musical playlists, based on a user’s mood or past preferences combined with 
the ability to process properties of the stored music (Bugatti, Flammini, & Miglior-
ati, 2002; Jun, Rho, & Hwang, 2010; Liu, Hsieh, & Tsai, 2010; Munoz-Exposito, 
Garcia-Galan, Ruiz-Reyes, & Vera-Candeas, 2007; Wieczorkowska & Kubera, 2010). 
Networks can also be used to automatically transcribe music (Marolt, 2004a, 
2004b) and to generate realistic-sounding singing voices by manipulating vibrato 
(Gu & Lin, 2014).

Clearly, there is a great deal of interest in using artificial neural networks to 
study musical cognition. Bharucha (1999) provides five different advantages of con-
nectionist research on music. First, artificial neural networks can account for how 
music is learned. Second, connectionist theories of such learning are biologically 
plausible. Third, networks provide accounts of music perception phenomena, such 
as contextual effects and the filling-in of incomplete information. Fourth, networks 
exploit similarity-based regularities that are important in theories of musical cog-
nition. Fifth, networks may discover regularities (e.g., in musical styles) that elude 
more formal analyses.

This fifth observation made by Bharucha (1999) hearkens back to the tension, 
as discussed in Chapter 1, between universal laws and musical aesthetics faced by 
psychophysical researchers. Proposing that some aspects of music cannot be cap-
tured by formal rules is similar to claiming, like Helmholtz, that natural laws cannot 
explain musical aesthetics.

Much of the musical connectionism pursued in later chapters of this book reacts 
against this fifth point of Bharucha (1999). The current research does not agree that 
a main goal of musical connectionism is to capture informal regularities. Instead, 
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the current research uses musical networks to reveal formal properties of music. 
The remainder of this chapter explores the uneasy relationship between formal 
and informal accounts of music, with a particular interest in connectionism’s role 
in this relationship.

2.2 Romanticism and Connectionism

2.2.1 Musical Romanticism

At the end of the period stretching from 1543 to 1687, the scientific revolution 
evolved into the Enlightenment (Ede & Cormack, 2004). The Enlightenment saw 
many of the ideas born during the scientific revolution extended and modified, 
particularly with respect to individualism, freedom, politics, and commerce. The 
resulting Industrial Revolution transferred power and wealth from the nobility to 
the commercial class (Plantinga, 1984).

The ideas that characterize the Enlightenment profoundly influenced politics, 
thinking, and art, which, in turn, created discontentment with the existing social 
order, and led to the 1789 revolution in France. This, in turn, led to an artistic and 
intellectual movement called Romanticism (Claudon, 1980) that roughly spanned 
the period from just before the French Revolution through to the end of the 19th 
century. Because the Enlightenment evolved from the scientific revolution, it too 
exalted reason and rationality. In contrast, Romanticism emphasized the individ-
ual, the irrational, and the imaginative (Einstein, 1947; Plantinga, 1984). It replaced 
reason with an emphasis on the imaginary and the sublime. The Romantic art-
ists looked back longingly at unspoiled, pre-industrial existence by depicting wild 
or fanciful settings. Nature was their inspiration. Romanticism appealed to the 
untamed mountains and chasms of the Alps to oppose the Enlightenment’s view 
of an ordered, structured world.

Many argue that the most purely Romanticist art was music, because music 
expresses mystical or imaginative ideas and emotions that language cannot (Ein-
stein, 1947; Plantinga, 1984; Sullivan, 1927). Language, of course, is a key vehicle of 
reason and rationality. In rejecting language, Romanticism focused upon purely 
instrumental music that “became the choicest means of saying what could not be 
said, of expressing something deeper than the word had been able to express” (Ein-
stein, 1947, p. 32). Romanticist composers strove to replace the calculated, rational 
form of such music as Bach’s contrapuntal fugues (Gaines, 2005; Hofstadter, 1979) 
with a music that expressed intense emotion and communicated the sublime (Ein-
stein, 1947; Longyear, 1988; Plantinga, 1984; Whittall, 1987).
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2.2.2 Connectionism as Romanticism

In reacting against classical cognitive science, connectionism also rejects the Car-
tesian rationalism that permeates classical cognitive science (Dawson, 2013). The rise 
of connectionist cognitive science is analogous to the Romanticist reaction against 
the Enlightenment. Dawson (2013) outlines many intellectual parallels between 
Romanticist music and connectionist cognitive science. We explore two of these 
parallels below.

The first parallel is the rejection of the logical. Romanticism rejected reason 
by moving away from language, particularly in music. This is paralleled in con-
nectionism’s claim that cognitive explanations need not appeal to explicit rules 
or symbols (Bechtel, 1994; Bechtel & Abrahamsen, 2002; Horgan & Tienson, 1996; 
Ramsey, Stich, & Rumelhart, 1991; Rumelhart & McClelland, 1986a). Connectionism 
abandons logicism, and assumes that the internal workings of its networks do not 
involve the rule-governed manipulation of symbols. “We would all like to attain a 
better understanding of the internal operations of networks, but focusing our search 
on functional equivalents to symbolic operations could keep us from noticing what 
is most worth seeing” (Bechtel, 1994, p. 458).

The second parallel is connectionism’s sympathy with Romanticism’s emphasis 
on nature. Cartesian philosophy, and the classical cognitive science that it inspired, 
view the mind as disembodied from the natural world. Connectionists reject this 
perspective by developing models that are biologically plausible or neuronally 
inspired (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986b). Con-
nectionism emphasizes the brain.

Biological inspiration carries with it sympathy with the sublime. Connectionists 
accept that the internal structure of their networks is very difficult to understand 
(Dawson, 1998, 2004, 2009; Dawson & Shamanski, 1994; McCloskey, 1991; Mozer 
& Smolensky, 1989; Seidenberg, 1993). This is because their networks mimic the 
mysterious structure of the brain. “One thing that connectionist networks have in 
common with brains is that if you open them up and peer inside, all you can see is 
a big pile of goo” (Mozer & Smolensky, 1989, p. 3). In the connectionist literature, 
detailed analyses of the internal structure of a network, coupled with accounts of 
how network structures solve problems of interest, are rare (Dawson, 1998, 2004, 
2005, 2009, 2013; Dawson & Shamanski, 1994).

Connectionism’s rejection of logicism, and its embrace of the sublime, accounts 
for its current popularity in the study of musical cognition. Some researchers believe 
that artificial neural networks can capture musical regularities that cannot be ration-
ally expressed (Bharucha, 1999; Rowe, 2001; Todd & Loy, 1991). Of course, this belief 
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about the utility of networks parallels the Romanticist view that one cannot for-
malize important characteristics of music.

This Romanticist perspective is readily evident, for example, in discussions of 
networks that compose music. Such networks are presumed to internalize con-
straints that are difficult to formalize. “Nonconnectionist algorithmic approaches 
in the computer arts have often met with the difficulty that ‘laws’ of art are char-
acteristically fuzzy and ill-suited for algorithmic description” (Lewis, 1991, p. 212). 
Furthermore, these “laws” are unlikely to arise from analyzing the internal struc-
ture of a network, “since the hidden units typically compute some complicated, 
often uninterpretable function of their inputs” (Todd, 1989, p. 31). Such accounts 
of modern connectionist networks evoke the earlier musings of Helmholtz about 
the nature of musical aesthetics.

Connectionist Romanticism raises some questions that we explore in detail in 
the final section of this chapter. First, if the musical regularities captured by arti-
ficial neural networks cannot be formally expressed, then what is the purpose of 
such networks in a cognitive science of music? Second, is it possible that musical 
networks can capture formal musical regularities?

2.3 Against Connectionist Romanticism

2.3.1 Bonini’s Paradox

Models attempt to enhance our understanding of the world. Cognitive scientists use 
many different kinds of models. These include statistical models that describe data 
(Kruschke, 2011; Lunneborg, 1994), mathematical models that provide quantifiable 
laws (Atkinson, Bower, & Crothers, 1965; Coombs, Dawes, & Tversky, 1970; Restle, 
1971), and computer simulations that themselves generate behaviour of interest 
(Dutton & Starbuck, 1971; Newell & Simon, 1961, 1972). Regardless of type, a model 
serves to increase understanding by providing a simplified and tractable account of 
some phenomenon of interest.

Merely creating a model, however, does not always guarantee greater under-
standing. This is particularly true of computer simulations of cognitive processes 
(Lewandowsky, 1993). Such simulations can encounter what Dutton and Starbuck 
(1971) call Bonini’s paradox. This paradox occurs when a computer simulation is as 
difficult to understand as the phenomenon being modelled. There are reasons to 
believe that the Romanticism of connectionism leads directly to Bonini’s paradox, 
particularly in the study of musical cognition.
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To begin, the internal structure of artificial neural networks is notoriously dif-
ficult to understand. This is because of their parallel, distributed, and nonlinear 
nature. Connectionists, after training a network, are often hard pressed to describe 
how it actually accomplishes its task.

In the early stages of the connectionist revolution, this was not a keen con-
cern. The 1980s was a period of “gee whiz” connectionism (Dawson, 2009) in which 
connectionists modelled phenomena that were prototypical for classical cognitive 
science. In the mid-1980s, it was sufficiently interesting to show that such phe-
nomena might be accounted for by alternative kinds of models. Researchers during 
this period were not required to delve into the details of the internal structures of 
networks to explain their operations. However, in modern connectionist cognitive 
science it is necessary for researchers to spell out exactly how networks function 
(Dawson, 2004). In the absence of such details, connectionist models have abso-
lutely nothing to contribute to cognitive science (McCloskey, 1991). It is no longer 
enough for a network to be inspired by the (sublime) brain. A network must provide 
details that give insight into how brains might actually process information. An 
un-interpreted network produces Bonini’s paradox.

Importantly, many musical networks have an additional wrinkle that makes 
them difficult to understand. In connectionism, there are two general approaches 
to network training. One is supervised learning. In supervised learning, a researcher 
defines a set of desired input/output pairings, and trains a network to generate 
these, typically with an error-correcting learning rule such as the one introduced in 
the next chapter. That is, in supervised learning the researcher knows beforehand 
what a network is designed to do and teaches the network to respond accordingly.

The other approach to network training is called unsupervised learning and is 
typically employed in what are called self-organizing networks (Amit, 1989; Car-
penter & Grossberg, 1992; Grossberg, 1980, 1987, 1988; Kohonen, 1977, 1984). In 
unsupervised learning, one presents input patterns to a network, but these patterns 
are not paired with desired outputs. Instead, networks stabilize after every input and 
then modify their weights to encode this stable state. As a result, a self-organizing 
network learns the statistical regularities in its input patterns and generates 
responses that reflect these regularities, without external guidance or teaching.

In general, connectionist cognitive science is much more likely to use super-
vised learning than unsupervised learning. However, it has been argued that this 
is not true in the study of musical cognition (Dawson, 2013), which seems to have 
a marked preference for unsupervised learning. In two collections of papers about 
connectionist musical cognition (Griffith & Todd, 1999; Todd & Loy, 1991), one 
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finds many more self-organizing networks than one would expect to find in other 
domains of cognitive science.

How is the use of self-organizing networks related to Bonini’s paradox? First, one 
constructs these networks from the same components used to create other sorts 
of artificial neural networks. Therefore, they are just as difficult to interpret as any 
other kind of network. Second, if one uses unsupervised learning to train a network, 
then difficulties in understanding the network’s internal structure are compounded 
by the additional fact that one may not even know what it is that the network has 
learned. If one does not know what a network’s responses are supposed to signify, 
then how can one understand the network?

2.3.2 An Alternative Paradigm

Of course, a strong motivator for applying connectionism to musical cognition, 
and for preferring unsupervised learning, is the Romanticist view that important 
aspects of music are informal. Presumably, networks can capture these regularities 
informally. However, any input/output relationship that can be realized in an arti-
ficial neural network must be formal. All connectionist networks are mathematical 
engines that compute functions–they map numerical elements from an input 
domain onto numerical elements in an output domain. In other words, musical 
networks do not have the advantage of capturing informal regularities that symbolic 
languages cannot capture, as some propose (Bharucha, 1999). Instead, networks 
have the disadvantage of capturing formal regularities that are difficult to ascertain 
or to express. We must discover and detail these regularities if connectionism is to 
contribute to the cognition of music.

Certainly, networks are hard to interpret. However, it is not impossible to 
explore the internal structure of a trained network in order to explain how it con-
verts its inputs into its responses. Connectionist cognitive scientists have developed 
many techniques for interpreting the internal structure of artificial neural networks 
(Baesens, Setiono, Mues, & Vanthienen, 2003; Berkeley, Dawson, Medler, Schop-
flocher, & Hornsby, 1995; Dawson, 2004, 2005; Gallant, 1993; Hanson & Burr, 1990; 
Hayashi, Setiono, & Yoshida, 2000; Hinton, 1986; Moorhead, Haig, & Clement, 
1989; Omlin & Giles, 1996; Setiono, Baesens, & Mues, 2011; Setiono, Thong, & Yap, 
1998; Taha & Ghosh, 1999).

The research detailed in the remaining chapters of this book concerns training 
artificial neural networks on musical tasks and then interpreting the internal struc-
ture of each trained network. We interpret networks in order to discover the manner 
in which they solve musical problems. Earlier we saw that Krumhansl (1990a) made 
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a number of design decisions that guided her studies of musical cognition. Similar 
decisions guide the research described in the chapters that follow. Let us consider 
these design decisions.

Krumhansl (1990a) focused her experimental research by studying subjects’ 
responses to musical pitch, typically building her stimuli from the manageable set of 
12 pitch-classes. She did this because the principle of octave equivalence captures the 
notion that pitch-class is a psychologically valid concept, because pitch-class is the 
foundation of Western tonal music, and because combinations of pitch-classes can 
be used to define more complex musical entities such as intervals, chords, and scales.

The simulation research reported in this book also focuses on tasks that involve 
pitch-class representations of stimuli. One reason for this design decision is an 
endorsement of all of Krumhansl’s (1990a) reasons for focusing on pitch. Later we 
demonstrate that pitch-class representations permit the definition of a number of 
interesting musical tasks. For instance, a network can be presented inputs repre-
sented in terms of constituent pitch-classes and can learn to perform such tasks 
as identifying a scale’s tonic, determining whether a scale is major or minor, clas-
sifying various types of triads and tetrachords, and generating the next chord in a 
progression.

A second reason for emphasizing pitch-class representations in the current 
research is that a great deal of the theory of Western music is related to pitch-class 
(Forte, 1973). We will see many examples in which network interpretations relate to 
music theory, and this relationship is facilitated when training sets are represented 
using pitch-classes.

Krumhansl (1990a) also made a number of design decisions concerning her 
experimental methods, such as whether subjects required musical expertise, and 
what types of judgments were required of subjects. We make a number of analogous 
design decisions concerning the nature of the networks to study.

First, all of the simulation studies that I report involve supervised learning. 
That is, I train networks to generate a desired set of input/output responses. This 
is because my primary goal is to interpret the internal structure of trained net-
works. To accomplish this research goal it is extremely helpful to know precisely 
the responses that a network has learned.

Second, all of the tasks my networks learn via supervised training involve 
well-established concepts in Western music theory. One reason for this is that music 
theory itself is typically used to construct a set of training stimuli. A second reason 
is that for such tasks music theory itself is a powerful aid to network interpretation.
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Third, all of the simulation studies that I report seek the simplest network archi-
tecture capable of learning a desired input/output mapping. For networks that 
include hidden units, this means finding the smallest number of required hidden 
units. If a network that had no hidden units can solve a problem, then I study this 
network. The reason for seeking the simplest networks that could learn a task is my 
goal of network interpretation: simpler networks are easier to interpret.

Fourth, many of the simulation studies that I report use a particular architecture 
that I call networks of value units (Dawson & Schopflocher, 1992). Such networks 
employ an activation function tuned so that processing units only turn on to a 
narrow range of incoming signals. One advantage of this architecture is that net-
works of value units have many desirable properties when the goal is to interpret 
their internal structure (Berkeley et al., 1995; Dawson, 1998, 2004, 2013). As the value 
unit architecture is not standard, the next section describes it in more detail, and 
explains its advantages for a research project that has as its goal the interpretation 
of the internal structure of trained networks.

2.4 The Value Unit Architecture

2.4.1 Activation Functions

A key element of a processor in an artificial neural network is its activation function. 
An activation function is a mathematical equation that converts a processor’s net 
input into a numerical value called the processor’s activity. If the processor is an 
output unit, then its activity is a response. If the processor is a hidden unit, then its 
activity is passed on as a signal to other processors in the network.

In modern artificial neural networks, most activation functions are nonlinear. 
The most common in the literature is the logistic function:

In this equation, net is a processor’s net input, and θ is the unit’s bias. Figure 2-2 
illustrates the logistic function. That it is nonlinear is evident in its sigmoid shape. 
The values of this function range from zero (when net input is at negative infinity) to 
one (when net input is at positive infinity). When net input is equal to θ, it produces 
an activity of 0.5. Thus, the bias is analogous to a processor’s threshold. Processors 
that use the logistic activation function are called integration devices (Ballard, 1986).

𝑓𝑓𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =
1

1 + 𝑛𝑛𝑛𝑛(−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+ 𝜃𝜃𝜃𝜃) 
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Figure 2-2 The logistic activation function used by an integration device to 
convert net input into activity.

The logistic activation function is the most common in connectionism and was 
fundamental to the discovery of learning rules for networks that include hidden 
units (Rumelhart et al., 1986). However, it is not the only activation function to be 
found in artificial neural networks. One review paper notes that an extremely large 
number of different activation functions exist in the connectionist literature (Duch 
& Jankowski, 1999).

One alternative activation function (Dawson & Schopflocher, 1992) uses a par-
ticular form of the Gaussian equation:

In this equation, the value µ is analogous to the bias of an integration device. 
However, when net input equals µ this equation produces a maximum activity of 
one. As net input moves away from µ in either direction, activity drops quickly 
toward zero. Figure 2-3 illustrates the shape of this activation function. Because 
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this function generates high activity to a very narrow range of net input values, 
processors that use this activation function are called value units (Ballard, 1986).

Figure 2-3 The Gaussian activation function used by a value unit to convert net 
input into activity.

One characteristic of an integration device is that after net input reaches a suffi-
ciently high value, the activity that it is converted into is essentially “on.” In Figure 
2-2, there would not be an appreciable difference between activity when net input 
was 6 and activity when net input was 600. A value unit exhibits a very different 
sensitivity to net input. A value unit generates very high activity to a narrow range 
of net inputs and generates very low activity to any net input that is outside this 
narrow range. This different nature of a value unit’s activation function often leads 
to advantages in comparison to the more traditional integration device architecture 
(Dawson & Schopflocher, 1992). 

First, for many problems, networks of value units learn much faster than do 
networks of integration devices. Second, networks of value units tend to require 
fewer hidden units than do networks of integration devices when confronted with 
a complex problem.

Third, and most important in the context of this book, value units have emergent 
properties that make the internal structure of networks that contain them easier to 
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interpret than networks of integration devices (Berkeley et al., 1995). In general, this 
is because each value unit is tuned, via its activation function, to respond to very 
particular combinations of stimulus features. This is not the case for integration 
devices, which in essence turn on when a sufficient number of stimulus features 
are present. The tuning that is inherent in the value unit architecture provides a 
window into how networks solve problems that is rarely available with the more 
traditional architecture. I have been able to take advantage of value unit properties 
to interpret the internal structure of many networks trained to solve problems in a 
wide variety of domains (Dawson & Boechler, 2007; Dawson, Boechler, & Orsten, 
2005; Dawson, Boechler, & Valsangkar-Smyth, 2000a; Dawson, Medler, & Berkeley, 
1997; Dawson, Medler, McCaughan, Willson, & Carbonaro, 2000b; Dawson & Pier-
cey, 2001; Dawson & Zimmerman, 2003; Leighton & Dawson, 2001; Medler, Dawson, 
& Kingstone, 2005; Yaremchuk & Dawson, 2005, 2008).

This is not to say that network interpretation requires the value unit architec-
ture. In some instances, networks of integration devices are indeed better for this 
task (Graham & Dawson, 2005). However, our experience has shown that value 
units are often advantageous when network interpretation is the goal, and it is 
for this reason that they are used in many of the simulations that we report. On 
the one hand, the success of these simulations provides more evidence in support 
of this network choice. On the other hand, the point of this book is the value of 
network interpretations; seeking interpretations in networks that use other activa-
tion functions is an important task that should be encouraged. Perhaps results like 
those reported in the chapters that follow will stimulate researchers to interpret 
the internal structure of other types of networks.

2.5 Summary and Implications

The musical cognitivism that was introduced in Chapter 1 is situated in classical 
cognitive science, which assumes that cognition results from the rule-governed 
manipulation of mental representations. Chapter 2 began by pointing out that 
alternative notions of cognition exist within cognitive science (Dawson, 2004). One 
of these is connectionism, which views cognition as emerging from non-symbolic 
information processing in the brain. Connectionist cognitive science models this 
type of information processing with artificial neural networks. Chapter 2 intro-
duced some of the basic properties of these networks, including the properties of 
processing units, of weighted connections, and of the ability of these networks to 
learn from experience. It then provided an overview of the general methodological 
considerations that guided the simulations reported in the chapters that follow. 
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These include focusing on musical tasks that involve pitch-class representations 
of stimuli, the use of supervised learning, seeking the simplest networks capable 
of solving musical problems, and a preference for the value unit architecture. In 
general, the goal of the simulation research is to interpret the internal structure 
of networks trained on musical tasks in order to determine the kind of musical 
regularities that these networks exploit and represent.

2.5.1 Methodological Implications

The types of networks explored in the chapters that follow were initially developed 
in a tradition that explored spatial pattern recognition (McClelland & Rumelhart, 
1986; Minsky & Papert, 1969; Pao, 1989; Ripley, 1996; Rosenblatt, 1962; Rumelhart 
& McClelland, 1986b; Schwab & Nusbaum, 1986). As a result, the networks typically 
learn to make judgments about sets of pitches that are presented simultaneously 
to a network—that is, across a spatial array of input units—instead of being pre-
sented in succession. These input representations are more closely related to the 
more abstract representation of music considered when mathematical set theory is 
applied to music (Forte, 1973, 1985; Roig-Francolí, 2008; Straus, 2005).

Choosing this type of input representation means that the musical tasks we con-
sider involve classification (e.g., identifying a scale’s type, classifying types of musical 
chords, identifying a composition’s musical key, and so on). I will for the most part 
not be concerned with temporal properties of music, such as rhythm. I will also 
not explore temporal properties that involve presenting musical stimuli over time, 
note by note. However, it is important to realize that I am not in principle limited 
to analyzing non-temporal properties of music. For instance, later in this book we 
will see how a (spatial) network is presented an input chord, and then generates the 
next chord to be played in a particular progression. In addition, I could, in princi-
ple, present music temporally to these spatial networks. For instance, I could use 
a network’s input units as a temporal window—an encoding of the pitches being 
“heard” at a particular moment in time—and then pass a musical stimulus over time 
through this input window.

By limiting the tasks below to those that I can present easily to our architectures 
of choice, I am simply exploring the possibility that such networks can provide new 
insights that may be relevant to musical cognition or to music theory. To the extent 
that I encounter success, I am motivated to explore in the future more complicated 
encodings to pursue similar temporal discoveries with the architectures described 
below. Furthermore, the exploration of music is not limited to the architectures 
that are employed in this book. Other architectures have been used (Griffith & 
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Todd, 1999; Todd & Loy, 1991), such as self-organizing networks that learn statis-
tical properties of inputs without requiring an external teacher (Gjerdingen, 1990; 
Kohonen, 2001; Page, 1994) or recurrent networks that are explicitly designed to 
detect regularities in time (Elman, 1990; Franklin, 2004, 2006).

A key theme of this book is that regardless of the architecture that one uses 
to explore music with neural networks, or of the types of musical regularities 
being investigated, after training a network it is critically important to interpret 
its internal structure. The literature has long established the computational power 
of artificial neural networks, so the fact that a network can learn a particular task 
should not by itself be either interesting or surprising. The interesting information 
provided by networks can only emerge from their interpretation: finding out how 
networks actually solve the tasks that they learn (Dawson, 1998, 2004, 2009, 2013).

2.5.2 Synthetic Psychology

The methodological implications discussed in the previous section pertain directly 
to a connectionist study of music. Importantly, the networks to be presented in the 
chapters that follow reflect a more general research program called synthetic psych-
ology (Braitenberg, 1984). In synthetic psychology, models are built first, and then 
used to produce data. The hope is that this data will include surprising phenomena, 
and that we will be in a position to offer straightforward accounts of these surprises 
because of our knowledge about the model itself.

It has been argued that one can use artificial neural networks in cognitive science 
to conduct synthetic psychology (Dawson, 2004). However, for this particular fla-
vour of synthetic psychology to succeed, network interpretations must be supplied. 
It is never a surprise to find that some network can learn a particular task. This 
is because networks are, in principle, extremely powerful information processors 
(Siegelmann & Sontag, 1991). Following from this, one can only be surprised by 
the methods for solving problems that networks discover as they learn. Of course, 
to experience such surprises one must examine the internal structure of trained 
networks. From this perspective, one can consider this book a case study of how 
connectionists can perform synthetic psychology.

One consequence of using networks to advance synthetic psychology is that 
one aspect of connectionist Romanticism is not abandoned: the emphasis on indi-
vidual networks. In some cases, such as when we examine how learning speeds are 
affected by different encodings, we train multiple networks on the same problem, 
treat each network as a different subject, and use statistics to get a sense of general 
performance. However, this is not the typical approach in this book. Instead, I will 
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usually focus on a single network that has been trained on a particular problem, 
and interpret the internal structure of this particular subject.

There is, of course, a concern that this approach will not reveal average or typical 
network structures, because it focuses upon individuals instead of groups. However, 
my experience—particularly with the musical problems that I detail in the chapters 
that follow—is that this is not the case. I have examined the connection weights of 
many different networks trained on the same task as part of the research that has 
culminated in this book, and I repeatedly find similar internal structures in different 
networks. Indeed, I have taken advantage of this to use some of the tasks described 
later as exercises in a neural network course. Students in this course train networks 
in class and then find in their networks similar structures to those that follow. I am 
confident that my interpretations reflect typical network solutions to these musical 
problems. Of course, this does not rule out the interesting possibility that networks 
that use different internal structures to solve this problem can still be discovered.

2.5.3 Seeking New Music Theory

If the zeitgeist of the connectionist cognitive science of music is to capture that 
which cannot be formalized, then the general paradigm outlined above might seem 
odd. If we use pitch-class representations, if we use supervised learning, and if we 
train networks on established concepts of music theory, then what new informa-
tion can we hope to learn? Should it not be the case that all we will pull out of our 
networks is the music theory that we put in?

Interestingly, this is not the case. My networks typically reveal alternative solu-
tions to musical problems that lead to new ideas in music theory. The task of the 
remainder of this book is to provide evidence to support this claim. Let us begin by 
considering networks that are trained on a basic musical task: identifying the tonic 
note of a musical scale.
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The Scale Tonic Perceptron

3.1 Pitch-Class Representations of Scales

In this chapter, I begin our synthetic psychology of music by training networks on a 
very basic task: identifying the tonic note of a stimulus scale. I begin by describing 
some basic properties of scales and consider how to present particular scales to a 
simple network and how to represent network responses to these stimuli. I then 
provide the details about the kind of network that I use and the method that I 
use to train it. I end by interpreting the internal structure of a trained network by 
examining the connection weights that are produced by training the network to 
generate the tonic of each scale in the training set.

Figure 3-1 An example major scale, and an example harmonic minor scale, 
represented using multiple staffs.

3.1.1 Musical Scales

Musical scales provide the foundation of Western tonal music (Laitz, 2008). The 
current chapter is concerned with two of these scales: the major and the harmonic 
minor. Figure 3-1 provides an example of a major scale (ascending and descending) 
and an example of a harmonic minor scale (ascending and descending) in musical 
staff notation. Both of these scales are in the key of A. These two types of scales 

Major scale (tonic of A)

Harmonic minor scale (tonic of A)
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play a central role in defining the musical stimuli that I will train a simple artificial 
neural network to classify in this chapter.

When discussing a particular musical scale it is typical to identify each note 
in terms of its position or degree within the scale. Typically the tonic of the scale 
(its first note) is assigned the value 1, its second note is assigned the value 2, and so 
on (Laitz, 2008). Figure 3-1 labels each note in the two scales in this fashion. Each 
scale degree also has a name that is sometimes used instead of the note’s number 
(Laitz, 2008). Note 1 is the tonic (or the root) of the scale, 2 is the supertonic, 3 is 
the mediant, 4 is the subdominant, 5 is the dominant, 6 is the submediant, and 7 
is the leading-tone.

3.1.2 Scales and Pitch-Classes

What is the difference between a major scale and a harmonic minor scale? In West-
ern tonal music, these scales differ in their patterns of distances or musical intervals 
between adjacent notes (Laitz, 2008). These different patterns in turn produce dif-
ferent musical experiences, sonorities, or emotional effects. In order to consider 
the patterns that define each of these scale types, let us first introduce the notion 
of pitch-class.

An examination of the two different musical scores in Figure 3-1 indicates 
that both use 18 notes to represent the scales. However, six of the notes (degrees 
2 through 7) are repeated. One of the notes (degree 1, which is the note A in both 
scales) has two versions that are an octave apart.

In terms of musical sound, the two versions of the note A in the score are distinct. 
The first (the A below middle C on a piano, sometimes called A3) begins each scale 
and is associated with a note with a fundamental frequency of 220 Hz. The second 
(the A above middle C or A4) ends the first line of each scale and is associated with 
a note with a fundamental frequency of 440 Hz.

A3 and A4 are clearly different notes or different pitches; the former is lower 
than the latter. Phenomenologically, however, these two different notes seem quite 
related (Révész, 1954). “The octave note [A4] therefore bears a double relation to the 
prime tone [A3]. In one respect, of all the notes within the span of the octave, it is 
the one most dissimilar to the prime tone, since it is the farthest from it in point of 
distance. In another respect, however, it is the note most similar to the prime tone, 
since of all the notes through which we passed, it is the one most similar to it in 
quality” (Révész, 1954, pp. 56–57). This relationship between notes an octave apart 
is called octave equivalence.
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Révész (1954) used the phenomenological notion of octave equivalence to argue 
that music cognition cannot simply pay attention to physical properties (e.g., sound 
frequency) but must also be sensitive to a nonphysical dimension: musical struc-
ture. Psychophysical experiments inspired by this perspective have studied octave 
equivalence in a variety of species, including humans, rats, starlings, and chickadees 
(Allen, 1967; Blackwell & Schlosberg, 1943; Cynx, 1993; Demany & Armand, 1984; 
Hoeschele, Weisman, Guillette, Hahn, & Sturdy, 2013; Shepard, 1964). These studies 
provide mixed support for octave equivalence. Some results suggest that the dem-
onstration of octave equivalence depends critically on musical context and listener 
expectations (Deutsch & Boulanger, 1984). Others claim that octave equivalence may 
be a universal property (Patel, 2008).

While its psychophysical support is murky, octave equivalence is a central 
assumption in the formal analysis of music (Forte, 1973; Hanson, 1960; Lewin, 2007; 
Roig-Francolí, 2008; Straus, 1991, 2005; Tymoczko, 2011). Musical analysis assigns 
two pitches separated by one or more octaves (e.g., A3 and A4) to the same pitch-class 
(i.e., A). In so doing, it uses pitch-class set notation, sometimes shortened to pc set, 
to provide a simpler representation of the notes presented in standard staff notation 
like Figure 3-1. With pc sets, a musical selection becomes a set of pitch-classes. For 
instance, while both scales in Figure 3-1 are written in the staves with 18 notes, in 
reality each only employs seven different pitch-classes, which is why scale degree 
can be represented using only seven different Roman numerals.

Forte (1973) uses the axiom of octave equivalence to assign two different pitches 
that are an octave apart to the same pitch-class. In Western music, there are only 
12 different pitch-classes available (see Figure 3-2 below). Forte further simplifies 
pitch-class set notation with the axiom of enharmonic equivalence. In standard 
staff notation, different symbols can represent the same pitch. For instance, A4 is 
a particular musical pitch. In a musical score, depending upon context, this one 
pitch could be represented with the symbol “A,” the symbol “B♭♭,” or the symbol 
“G♯♯.” The axiom of enharmonic equivalence uses one symbol (A) to stand for any 
of these different symbols. (In this book, this axiom is exploited to reduce the use 
of the ♭ symbol.)

Let us illustrate the structure of the major and harmonic scales from Figure 
3-1 with a geometric exploitation of pitch-class notation. First, we arrange all 12 
pitch-classes of Western music around a circle of minor seconds, so that adjacent 
pitch-classes are a minor second (one semitone) apart. Second, we draw spokes 
from the centre of the circle to indicate which pitch-classes are included in a scale. 
Figure 3-2 provides this illustration for both of the scales from Figure 3-1. Note that 
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both figures have only seven spokes, because both scales are constructed using only 
seven different pitch-classes.

Western music is typically tonal: compositions are set in a particular musical 
key, which in turn provides important structure to an audience. For instance, when 
a musical key is established, some notes (in particular the tonic, subdominant, and 
dominant notes of the key) are more stable than others (Krumhansl, 1990a). As a 
result, a composer can manipulate a piece’s effect on a listener by moving from less 
stable to more stable tonal elements (Schoenberg, 1969). Tonality is created in music 
by restricting the use of musical notes (Browne, 1981). Consider the pitch-classes of 
the A major scale illustrated in Figure 3-2. In the circle of minor seconds, there are 
12 different pitch-classes available. However, the A major scale only employs seven 
of them: A, B, C♯, D, E, F♯, and G♯.

The pitch-classes that are not used in the A major scale are missing for a 
reason. A major scale has a specific pattern of distances between adjacent notes. 
Again, consider Figure 3-2’s illustration of A major. Start at A, and move clock-
wise around the circle. The next note with a spoke (B) is two semitones, or a full 
tone, higher than A. The next note encountered (C♯) is a full tone higher than 
B. However, the next note with a spoke (D) is only a semitone higher than the 
preceding note (C♯). Following the circle all the way around until the pitch-class 
A is encountered again, a specific pattern of between-note distances is apparent: 
tone-tone-semitone-tone-tone-tone-semitone. This pattern of between-note dis-
tances defines a major scale (Laitz, 2008).

If one excludes a different subset of pitch-classes from the circle of minor 
seconds, then one creates a different type of musical scale. Consider the A har-
monic minor scale that is also represented in Figure 3-2. The A harmonic minor 
scale is defined by the pitch-classes A, B, C, D, E, F, and G♯, which produces dif-
ferent between-note distances. Look at the A harmonic diagram in Figure 3-2, 
starting at A and moving clockwise around the circle. Most of the distances are 
either semitones or full tones as was the case for A major, but there is also one 
distance (from F to G♯) that is an augmented second (three semitones). The com-
plete pattern of between-note distances that defines a harmonic minor scale is 
tone-semitone-tone-tone-semitone-augmented second-semitone.

Importantly, the pattern of between-note distances that defines either a major 
or a harmonic minor scale is constant. This means that the two spoke patterns 
presented in Figure 3-2 define the major or harmonic scale whose tonic is any of 
the 12 pitch-classes. For instance, consider the spokes of the A major circle as a solid 
unit. If we rotate this unit 30° clockwise, then the between-note distances will be 
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unchanged, but the pattern starts on a new tonic note (B♭). This rotated spoke 
pattern defines the B♭ major scale. Similarly, if one takes the entire set of spokes for 
the A harmonic minor scale in Figure 3-2 and rotates them 30° counter-clockwise, 
the pattern now defines the G♯ harmonic minor scale.

Figure 3-2 The circle of minor seconds can be used to represent the pitch-classes 
found in the A major and the A harmonic minor scales.

The spoke patterns illustrated in Figure 3-2 clearly represent any major or any har-
monic minor musical scale. This suggests, for instance, that if we were presented 
with a particular spoke pattern, then we could examine it for particular patterns of 
between-note distances, identifying whether a major or harmonic minor scale was 
depicted. Furthermore, a closer examination of the relative positions of the various 
spokes would permit us to determine the tonic note of the depicted scale.

This latter task defines our first case study of a musical network. I will present 
a perceptron the set of pitch-classes that define a major or harmonic minor scale, 
and train it to identify the tonic note of the presented scale.

3.1.3 Pitch-Class Representations

Pitch-class representations permit mathematics to be used to explore and manipu-
late musical structure (Forte, 1973; Lewin, 2007). For mathematical manipulation, 
a pitch-class representation is an ordered set of numbers that indicate which 
pitch-classes are present in a musical entity. Using Allen Forte’s pitch-class nota-
tion, each pitch is assigned a specific integer, with C represented as 0, C♯ as 1, and 
so on. Therefore, in this system, the raw pitch-class representation of the A major 
scale is the ordered set [9, 11, 1, 2, 4, 6, 8].
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Pitch-class representations are also often used when artificial neural networks 
learn to classify musical patterns. However, this sort of pitch-class representation 
is slightly different from the mathematical representation described above. For 
pitch-class representation in a musical network, the network has 12 different input 
units. Each input unit represents the presence or absence of a particular pitch-class, 
as is the case in Figure 3-3 in Section 3.2. For instance, imagine that the first input 
unit represents the pitch-class A; the second input unit represents the pitch-class 
B; and so on. If the pitch-class A is present in a stimulus, then we turn its input 
unit “on” by giving it an activity of one. However, if the pitch-class A is absent 
from a stimulus, we turn its input unit “off” using an activity of zero. In short, a 
pitch-class representation for a network is a string of 12 bits representing the pres-
ence or absence of the 12 possible pitch-classes. For instance, one would use the 
following pitch-class representation to present the A major scale to a network: [1, 
0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1].

Table 3-1 provides this type of pitch-class representation for each of the possible 
major and harmonic minor scales in Western music. This table defines 24 different 
stimuli that can be presented to a perceptron that has 12 different input units. In the 
next section, I describe training a perceptron to accomplish the following pattern 
recognition task: when presented with one of the stimuli provided in Table 3-1, 
the perceptron will indicate the tonic note of that stimulus, ignoring whether the 
stimulus represents a major or a harmonic minor scale.

Before proceeding with an account of the perceptron, we can use Table 3-1 to 
illustrate why this task is not going to be straightforward for a perceptron to learn. 
We saw in Figure 3-2 that harmonic minor scales are distinct in that they include an 
interval of an augmented second. One might think that a perceptron could simply 
detect that interval and then use its position to determine the scale’s tonic. How-
ever, the easy identification of the augmented second requires that the pitch-classes 
already be arranged in the order in which they are found in a harmonic minor scale. 
This will not be the case for the perceptron; it will always receive pitch-classes in the 
same order regardless of scale. That is, the input patterns are the different rows of 
Table 3-1. One cannot simply look at any of those rows and immediately see where 
the augmented second lies, or for that matter where the tonic of the scale is pos-
itioned. I am making the problem difficult for the perceptron by always presenting 
pitch-classes in the same order. For this reason, I am interested in discovering how 
the perceptron deals with this difficulty when it learns how to identify scale tonics.
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Table 3-1 Pitch-class representation (for an artificial neural network) of 12 different major 
and 12 different harmonic minor scales.

Scale 
tonic

Pitch-class components of scale

A A# B C C# D D# E F F# G G#

Major 
scale

A 1 0 1 0 1 1 0 1 0 1 0 1

A# 1 1 0 1 0 1 1 0 1 0 1 0

B 0 1 1 0 1 0 1 1 0 1 0 1

C 1 0 1 1 0 1 0 1 1 0 1 0

C# 0 1 0 1 1 0 1 0 1 1 0 1

D 1 0 1 0 1 1 0 1 0 1 1 0

D# 0 1 0 1 0 1 1 0 1 0 1 1

E 1 0 1 0 1 0 1 1 0 1 0 1

F 1 1 0 1 0 1 0 1 1 0 1 0

F# 0 1 1 0 1 0 1 0 1 1 0 1

G 1 0 1 1 0 1 0 1 0 1 1 0

G# 0 1 0 1 1 0 1 0 1 0 1 1

Harmonic 
minor 
scale

A 1 0 1 1 0 1 0 1 1 0 0 1

A# 1 1 0 1 1 0 1 0 1 1 0 0

B 0 1 1 0 1 1 0 1 0 1 1 0

C 0 0 1 1 0 1 1 0 1 0 1 1

C# 1 0 0 1 1 0 1 1 0 1 0 1

D 1 1 0 0 1 1 0 1 1 0 1 0

D# 0 1 1 0 0 1 1 0 1 1 0 1

E 1 0 1 1 0 0 1 1 0 1 1 0

F 0 1 0 1 1 0 0 1 1 0 1 1

F# 1 0 1 0 1 1 0 0 1 1 0 1

G 1 1 0 1 0 1 1 0 0 1 1 0

G# 0 1 1 0 1 0 1 1 0 0 1 1

Note. Each row provides the pitch-classes that are included in a particular scale whose 
mode and tonic are provided in the two columns on the left. The number 1 indicates that 
a pitch-class is included in the scale, and a 0 indicates that it is not included in the scale. 
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3.2 Identifying the Tonics of Musical Scales

3.2.1 Task

Our goal is to train a perceptron to determine the tonic note of a pattern of 
pitch-classes presented to its input units; each presented pattern defines either a 
major scale or a harmonic minor scale.

Figure 3-3 Architecture of a perceptron trained to identify the tonic notes of 
input patterns of pitch-classes.

3.2.2 The Perceptron

A perceptron is a simple artificial neural network originally invented by Frank 
Rosenblatt in the 1950s (Rosenblatt, 1958, 1962). This type of network consists of 
a layer of input units directly connected to a layer of output units (Figure 3-3). In 
this figure, circles represent processing units and lines between circles represent 
weighted connections between processers through which signals are sent. Percep-
trons are simple because they do not include any hidden units between input and 
output units. This means that perceptrons are less powerful than the more modern 
multilayer networks that we will see in the next chapter (Minsky & Papert, 1969). 

 

 

A A# B C C# D D# E F F# G G#

A A# B C C# D D# E F F# G G#

Output Units
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However, perceptrons are still powerful enough to provide interesting models of 
some aspects of cognition (Dawson, 2008; Dawson, Dupuis, Spetch, & Kelly, 2009; 
Dawson, Kelly, Spetch, & Dupuis, 2010b).

How do perceptrons learn? Modern artificial neural networks use continuous, 
nonlinear activation functions to convert net inputs into output unit responses. As 
indicated in Chapter 2, many of the networks described in this book use value units, 
which employ a Gaussian activation function. The use of a continuous activation 
function permits networks to be trained using gradient descent learning. Gradient 
descent learning is a form of supervised learning in which output unit error is used 
to modify existing connection weights in order to reduce future error. That is, 
after connection weights are changed, the next time the same pattern is presented 
to the network it will generate less error from it. In general, learning is defined as 
wij(t+1) = wij(t) + ∆wij, where wij is the weight of the connection from input unit i 
to output unit j, (t+1) and (t) indicate time, and ∆wij is a computed weight change. 
This equation simply says that each new weight is equal to some computed weight 
change that is added to the old weight.

The computed weight change is based on the error calculated for the output unit. 
In general, it is equal to a fractional learning rate (ε) times the error computed for the 
unit at the output unit end of the connection (tj – aj) times the activity of the unit 
at the input end of the connection (ai). In other words ∆wij = ε(tj – aj)ai. In gradient 
descent learning, output unit error is also scaled by the derivative of the (continu-
ous) activation function (Dawson, 2004, 2008). This attempts to help learning by 
changing weights in such a way that the network moves down the steepest slope of 
an error surface. The particular mathematics of gradient descent learning depends 
on which activation function is used in the network (Dawson & Schopflocher, 1992).

By repeatedly presenting each of the patterns in a training set, and by modify-
ing connection weights using supervised learning, I can reduce errors to the point 
that it can be said that the perceptron is generating the correct response to each 
stimulus. At this point, one can say that the network has converged. That is, it 
has discovered a set of connection weights that correctly converts each stimulus 
into a correct response.

3.2.3 The Scale Tonic Perceptron

The scale tonic perceptron, illustrated in Figure 3-3, has 12 input units, each repre-
senting the presence or absence of a particular pitch-class in a stimulus. The 
perceptron also has 12 output units, which also represent different pitch-classes. The 
input units are used to present the perceptron a scale represented as pitch-classes 
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(any of the rows in Table 3-1). The perceptron learns to turn on only one of its output 
units, the one that represents the pitch-class of the tonic of the input pattern. The 
grey shading in Figure 3-3 illustrates an example of a desired outcome of training: 
the network correctly responds with a tonic of C when presented the pitch-classes 
of the C major scale. Each output unit in the perceptron is a value unit that uses 
a Gaussian activation function to convert incoming signals to internal activity 
(Dawson & Schopflocher, 1992).

3.2.4 Training Set and Training

The training set consists of 24 different input patterns; each pattern is a row of 
numbers taken from Table 3-1. For any input pattern, the desired response turns the 
output unit representing the pattern’s tonic note on, and turns the other 11 output 
units off. Training is conducted with the gradient descent rule developed specific-
ally for perceptrons whose output processors are value units (Dawson, 2004). The 
software for training the perceptron was the Rosenblatt program (Dawson, 2005), 
which is available as freeware from the author’s website http://www.bcp.psych.
ualberta.ca/~mike/AlienMusic/

All connection weights in the perceptron are set to random values between 
−0.1and 0.1 before training begins. The biases of the output units (i.e., the value of µ 
for their Gaussian activation functions) are initialized to zero, and are not modified 
by training. We employ a learning rate of 0.005. Training proceeds until the network 
generates a “hit” for each output unit, for each of the 24 patterns in the training set. 
A “hit” is defined as activity of 0.9 or higher when the desired response is one, or as 
activity of 0.1 or lower when the desired response is zero.

Under these conditions, perceptrons of the type represented in Figure 3-3 learn to 
identify the tonic of an input pattern extremely rapidly, generally requiring between 
20 and 30 epochs of training before generating 12 “hits” to each training stimulus. 
An epoch of training for this network involves training the network once on each 
of the 24 training patterns; we randomize the order of pattern presentation every 
epoch. The particular network described in more detail in the next section learned 
to solve the problem after only 19 epochs of training.

3.3 Interpreting the Scale Tonic Perceptron

3.3.1 Interpreting Connection Weights

A perceptron consists simply of a set of input units connected to a set of output units. 
Therefore, to interpret the internal structure of this type of network one is limited 
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to examining the various connection weights in the network after training has suc-
ceeded. Table 3-2 above provides the entire set of 144 connection weights observed 
in a typical scale tonic perceptron at the end of training. Each column of the table is 
associated with one of the output units; each row of the table is associated with one 
of the input units. Therefore, one column of numbers in Table 3-2 provides the set of 
connection weights from each of the 12 input units to one of the output units.

Table 3-2 The connection weights from each input unit to each output unit for a 
perceptron trained to identify the tonic pitch-class of an input major or harmonic minor 
scale pattern.

Input 
units 
(scale 
pitch- 
classes)

Output units (tonic pitch-classes)

A A# B C C# D D# E F F# G G#

A 0.06 −0.24 0.75 0.38 −0.40 0.33 −0.65 0.27 −0.30 −0.18 −0.11 0.44

A# 0.37 0.10 −0.34 0.77 −0.49 −0.49 0.29 −0.60 0.19 −0.16 −0.24 0.02

B −0.01 0.36 0.07 −0.25 −0.72 −0.44 −0.55 0.32 −0.65 0.18 −0.34 0.13

C 0.27 0.01 0.41 −0.05 0.26 −0.63 −0.41 −0.52 0.37 −0.77 0.18 0.22

C# 0.39 0.22 0.04 0.48 −0.10 0.37 −0.77 −0.47 −0.49 0.38 −0.71 −0.09

D −0.20 0.29 0.21 0.19 −0.36 −0.15 0.33 −0.75 −0.47 −0.48 0.44 0.80

D# 0.68 −0.24 0.33 0.20 0.00 −0.44 −0.04 0.26 −0.75 −0.51 −0.40 −0.38

E −0.30 0.63 −0.21 0.32 −0.33 −0.07 −0.29 −0.08 0.25 −0.75 −0.34 0.49

F 0.54 −0.36 0.65 −0.17 −0.26 −0.23 −0.04 −0.33 −0.09 0.25 −0.75 0.45

F# 0.45 0.49 −0.33 0.80 0.12 −0.32 −0.22 −0.03 −0.39 −0.05 0.29 0.75

G 0.74 0.46 0.52 −0.37 −0.74 0.23 −0.41 −0.23 −0.05 −0.46 −0.15 −0.33

G# −0.31 0.81 0.45 0.47 0.44 −0.64 0.23 −0.30 −0.22 −0.12 −0.33 0.16

Note. Each row provides the connection weight from a particular input unit to each of the 
12 output units.

The set of connection weights in Table 3-2 represents one perceptron’s “knowledge” 
about the relationship between scale patterns and tonic pitch-classes. The prob-
lem is to discover the nature of this knowledge by examining this entire pattern 
of connectivity. Ordinarily, when confronted with a matrix of numbers like Table 
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3-2, one might explore its structure by using multivariate statistics (such as factor 
analysis or multidimensional scaling) to make the matrix more understandable. 
Fortunately, we can understand the workings of a scale tonic perceptron by simply 
rearranging Table 3-2 in a manner that takes advantage of some general, well-known 
musical properties.

Consider the first column of Table 3-2. The first entry in this column is the 
weight from the input pitch-class A to the output tonic pitch-class A. However, this 
entry can also be described as the weight of the connection to the output pitch-class 
A from the pitch-class that is zero semitones away from the output pitch-class 
(moving in a clockwise direction around the circle of minor seconds that was used 
in Figure 3-2). Similarly, the second entry in the first column of Table 3-2 is also 
the weight to that pitch-class from the note that is one semitone away around the 
circle of minor seconds.

When we apply this alternative interpretation to other columns of Table 3-2, we 
find that entries that are in the same row do not represent notes the same distance 
away from the output pitch-class. For instance, the first entry in the second column 
is the weight to the output pitch-class A♯ from the input pitch-class (A) that is 11, 
not zero, semitones away.

One can use this alternative interpretation to rearrange the Table 3-2 weights so 
that the first connection weight appearing in a column corresponds to a zero semi-
tone distance between the input and output pitch-classes, the next corresponds to a 
one semitone distance, and so on. Table 3-3 represents the Table 3-2 weights in this 
alternative manner. Importantly, the connection weights in Table 3-3 are identical 
to those in Table 3-2; we simply provide them a different row label and reorganize 
the table to reflect the difference in labelling. In a real sense, the perceptron itself 
“interprets” the weights as labelled in Table 3-3, and not as labelled in Table 3-2, 
because an inspection of Table 3-3 reveals an elegant solution to converting an 
input scale pattern to an output tonic pitch-class, as we will now proceed to discuss.

If one inspects the values of the connection weights along each row of Table 3-3 
(ignoring for the moment whether the weight is positive or negative), then one sees 
commonality. In general, all of the connection weights in each row are roughly the 
same size. (If one ignores sign, and computes the standard deviation for each row, 
the standard deviations range in size from 0.04 to 0.07.) In other words, if one con-
siders input pitch-classes in terms of relative distance from the output pitch-class 
rather than in terms of absolute pitch-class, then structure emerges without the 
need for multivariate statistics.
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Table 3-3 The rearranged connection weights from Table 3-2.

Number of 
semitones 
between 
input pitch- 
class and 
output 
pitch-class

Output units (tonic pitch-classes)

A A# B C C# D D# E F F# G G#

0 0.06 0.10 0.07 −0.05 −0.10 −0.15 −0.04 −0.08 −0.09 −0.05 −0.15 0.16

1 0.37 0.36 0.41 0.48 −0.36 −0.44 −0.29 −0.33 −0.39 −0.46 −0.33 0.44

2 −0.01 0.01 0.04 0.19 0.00 −0.07 −0.04 −0.03 −0.05 −0.12 −0.11 0.02

3 0.27 0.22 0.21 0.20 −0.33 −0.23 −0.22 −0.23 −0.22 −0.18 −0.24 0.13

4 0.39 0.29 0.33 0.32 −0.26 −0.32 −0.41 −0.30 −0.30 −0.16 −0.34 0.22

5 −0.20 −0.24 −0.21 −0.17 0.12 0.23 0.23 0.27 0.19 0.18 0.18 −0.09

6 0.68 0.63 0.65 0.80 −0.74 −0.64 −0.65 −0.60 −0.65 −0.77 −0.71 0.80

7 −0.30 −0.36 −0.33 −0.37 0.44 0.33 0.29 0.32 0.37 0.38 0.44 −0.38

8 0.54 0.49 0.52 0.47 −0.40 −0.49 −0.55 −0.52 −0.49 −0.48 −0.40 0.49

9 0.45 0.46 0.45 0.38 −0.49 −0.44 −0.41 −0.47 −0.47 −0.51 −0.34 0.45

10 0.74 0.81 0.75 0.77 −0.72 −0.63 −0.77 −0.75 −0.75 −0.75 −0.75 0.75

11 −0.31 −0.24 −0.34 −0.25 0.26 0.37 0.33 0.26 0.25 0.25 0.29 −0.33

Note. In this table each row indicates the relative distance between an input unit’s 
pitch-class and an output unit’s pitch-class measured in semitones. Thus the connection 
weights across a row are not from the same input unit, but are instead from different 
input units that serve the same role in different scales.

Alternatively, the common pattern in each row suggests that any column of weights 
from Table 3-3 represents a pattern of connectivity that is constant for any output 
unit. Indeed, this is true for output pitch-classes C♯, D, D♯, E, F, F♯, and G. The 
remaining output pitch-classes (A, A♯, B, C, and G♯) have essentially the same pat-
tern, but the pattern has been multiplied by −1. Importantly, this difference (being 
inverted by multiplication by −1) has no effect on output unit behaviour, because 
the Gaussian activation is symmetric in the positive and the negative directions 
away from µ.
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Recognizing the irrelevance of “column sign,” we can take the connection 
weights in the columns for the inverted output pitch-classes (A, A♯, B, C, and G♯) 
and multiply them by −1 to make them coincide with the pattern found in the other 
seven columns. Then, we can compute the average of each of the 12 rows in Table 
3-3 in order to determine the average pattern of connectivity from the input units 
to the output units. Figure 3-4 provides this average pattern of connectivity.

Figure 3-4 The connection weights between the 12 input units and any output 
unit in the scale tonic perceptron.

On first inspection, it is not immediately apparent how the pattern of weights in 
Figure 3-4 permits the perceptron to identify an input pattern’s tonic. It is inter-
esting, from a musical perspective, that the most extreme weights are from the 
pitch-classes that are either 6 or 10 semitones away from the output pitch-class. This 
is because both of these pitch-classes are absent from both the major and the minor 
harmonic scales. What is the relationship between the other weights and the tonic?

We answer these questions by undertaking a more specialized inspection of the 
connection weight pattern. Figure 3-5 plots the same weights as depicted in Figure 
3-4 but removes the bars representing weights that receive a zero signal when a 
major scale pattern is input. Only seven bars remain, because only seven input 
units are turned on. One key observation about Figure 3-5 is the spacing between 
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adjacent bars. Note that the spacing between bars, measured in tones and semitones, 
is exactly the spacing that we saw earlier described a major scale pattern.

Figure 3-5 The connection weights between the 12 input units and an output unit 
in the scale tonic perceptron, showing only those connections that have a signal 
sent through them when the output unit’s major scale pattern is presented to it.

A second property of the weights plotted in Figure 3-5, which is not quite as evident 
from the figure, is that if one sums their seven values, the result is −0.04. (The sum 
of these weights is identical to the net input sent to this output unit when the major 
scale associated with it is presented.) This is important because when the perceptron 
was trained, the value of µ in each output unit’s Gaussian activation function was 
held constant at zero. This means that in order to generate a maximum output 
response, the net input flowing into the output unit must be near zero.

A value of −0.04 is close enough to zero to generate Gaussian activity that is 
near maximum (0.9950). In short, if signals are sent through the seven connection 
weights plotted in Figure 3-5—as happens when the major scale pattern associated 
with that output unit is presented to the network—then the output unit of the tonic 
pitch-class for this major scale will activate, producing a correct response.

A similar account holds for the case in which the network’s stimulus is the har-
monic minor scale. Figure 3-6 is similar to Figure 3-5, but in this case only plots 
the connection weights that carry signals from the harmonic minor scale input 
pattern. Again, the distances between adjacent bars are identical to the harmonic 
minor scale pattern that was discussed earlier, and the sum of the weights (or the 
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net input to the output unit) is close enough to zero (i.e., −0.01) to generate near 
maximum output unit activity (0.9997).

Figure 3-6 The connection weights between the 12 input units and an output 
unit, showing only those connections that have a signal sent through them when 
the output unit’s harmonic minor scale pattern is presented to it.

In short, the pattern of weights in Figure 3-4 is highly structured. For the particular 
output unit that receives signals through these weights, the pattern of weights turns 
the output unit on when we present the major scale or harmonic minor scale built 
on the output unit’s tonic. Importantly, for some other stimulus—for instance, the 
major scale that is associated with a different output unit’s tonic pitch-class—this 
output unit will not turn on. Because the signal coming from the input units will 
not match this unit’s major or harmonic minor scale, the net input will not be 
close to zero, and therefore the output unit will generate near-zero activity. For 
instance, imagine that Figures 3-4, 3-5, and 3-6 all represent the pattern of connec-
tivity from the input pitch-classes to output pitch-class A. For this output unit, the 
bar labelled 0 comes from the input pitch-class A, the bar labelled 1 comes from the 
input pitch-class A♯, and so on.

Now imagine that we present the G major scale to the perceptron. This involves 
turning on a particular set of input units: A, B, C, D, E, F♯, and G. However, if we 
consider these input pitch-classes in terms of the relative distance not to G but 
instead to the output unit for A, we get a very different pattern of incoming signals 
from either Figure 3-5 or 3-6.
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Figure 3-7 plots the connections to output unit A that are active for the G major 
scale stimulus. This pattern does not match either the major scale pattern of Figure 
3-5 or the harmonic minor scale pattern of Figure 3-6. Indeed, if one sums the Figure 
3-7 bars, the result (the net input to output unit A) is −1.00. This value is so far away 
from the value of µ (which, again, equals zero) that the output unit for A generates 
a very weak Gaussian activity (0.0432).

Figure 3-7 The active connections to the output unit for pitch-class A when the 
network is presented the G major scale.

3.3.2 Summary of the Perceptron

We can now summarize what we know about the artificial neural network that has 
been the subject of this chapter.

We trained a perceptron (Figure 3-3) to identify the tonic pitch-class of a major 
or harmonic minor scale presented to the network. The perceptron learned this 
task very quickly, in 19 epochs of training. An examination of the 144 connection 
weights in the perceptron revealed that it had quickly discovered some key musical 
properties that it exploited to accomplish this task.

First, the perceptron learned not to treat input units as if they represented 
absolute pitch-classes. Instead, the perceptron “considered” input units in terms 
of their semitone distance (clockwise around the circle of minor seconds) from the 
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pitch-class represented by each output unit. For each output unit, the perceptron 
found the input pitch-class zero semitones away, and set the weight between the 
input and output unit to be roughly equal to the first bar in Figure 3-4. Similarly, 
it found the input pitch-class one semitone away, and assigned the connection 
between it and the output unit to be roughly equal to the second bar in Figure 3-4; 
this process was repeated for all of the remaining input units.

The resulting pattern of connection weights (Figure 3-4) for each output 
unit pitch-class combined the two scale patterns discussed in Section 3.1.2 
into one set of connection weights. If the pattern of pitch-classes presented to 
the perceptron is the major scale for a particular output unit, then signals sent 
through the connection weights come from pitch-classes spaced at distances 
tone-tone-semitone-tone-tone-semitone away from the tonic (Figure 3-5). This 
produces a net input near zero, which activates the output unit.

Similarly, if the pattern of pitch-classes presented to the perceptron is 
the harmonic minor scale for a particular output unit, then signals sent 
through the connection weights come from pitch-classes spaced at distances 
tone-semitone-tone-tone-semitone-augmented second-semitone (Figure 3-6). 
Again, this produces a near-zero net input, which turns the correct output unit on.

Importantly, the pattern of connection weights in Figure 3-4 is such that 
major or harmonic minor scale inputs turn the correct output unit on, but also 
turn the remaining output units off. This is because these patterns produce net 
inputs to the other 11 output units that are sufficiently different from µ to generate 
near-zero activity.

In short, the perceptron quickly solves the scale tonic problem by discovering 
the between-distance spacing of pitch-classes that define both the major and the 
harmonic minor scales. What is astonishing is that this basic musical knowledge—a 
component of basic musical training (Martineau, 2008)—is acquired by a learning 
rule in which perceptron weights are slightly adjusted after each pattern presenta-
tion in order to decrease the measured error in each output unit. It may also be 
surprising to realize that the confusing array of connection weights presented in 
Table 3-2 represent this basic musical knowledge.

3.4 Summary and Implications

In this chapter, I described the training of a network that generated the appropriate 
scale tonic when presented with the pitch-classes that defined a particular major 
or harmonic minor scale. The resulting connection weights reflected basic music 
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theory, as these weights captured the between-note distances that characterize 
both types of scales.

It is perhaps surprising that a single set of connection weights can identify the 
tonic of both a major and a harmonic minor scale. Even more interesting is the fact 
that the perceptron uses the same pattern of weights—rotated to correspond to the 
appropriate pitch-classes—to identify the tonics of different scales.

Given that a perceptron quickly learns to identify a scale pattern’s tonic, one 
might hypothesize that a similar network could learn to classify an input scale 
pattern’s mode—that is, to identify whether an input pattern represents a major or 
minor key. A perceptron for this task would use 12 input units to represent input 
pitch-classes, and a single output unit to represent mode. This perceptron could be 
presented any of the 24 stimuli that were presented in Table 3-1. We could try to train 
this network to turn this output unit on if the presented pattern was a major scale, 
and to turn this output unit off if the presented pattern was a harmonic minor scale.

At face value, identifying scale mode seems simpler than identifying scale tonic. 
However, and under a wide variety of training conditions (e.g., different learning 
rates, different initial conditions for weights), one discovers that a perceptron cannot 
be taught to accomplish this task. It could never generate a correct response to each 
of the 24 patterns in the training set.

This illustrates an important property of perceptrons: because of their simple 
structure (i.e., because they have no intermediate processors between input and 
output units), they are not powerful enough to solve every pattern recognition 
problem (Minsky & Papert, 1969). The reason for this is that without additional 
processors, called hidden units, they cannot detect higher-order regularities that 
are required to solve complex problems (Dawson, 1998, 2004, 2013).

The fact that a network as simple as a perceptron is capable of solving the scale 
tonic problem is highly informative, because it reveals that this particular musical 
problem is computationally simple. That a perceptron cannot detect whether a 
scale is major or minor indicates that a more powerful type of network, called a 
multilayer perceptron, is required for other musical problems. The next chapter 
introduces the multilayer perceptron and provides a case study wherein it is used 
to explore music by training it to detect a scale’s mode: whether a presented pattern 
is associated with a major or harmonic minor scale.
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The Scale Mode Network

4.1 The Multilayer Perceptron

4.1.1 Carving Pattern Spaces

How can researchers overcome the limitations of perceptrons? Perceptron power 
increases when we add one or more layers of intermediate processors are added 
between the input and the output units of the perceptron. These hidden units do 
not have any direct connection to the external world; they reside completely within 
the network. An artificial neural network that incorporates hidden units is called 
a multilayer perceptron. This chapter illustrates using a multilayer perceptron by 
training and interpreting the one illustrated in Figure 4-1, a network designed to 
detect whether an input scale is major or minor.

Figure 4-1 A multilayer perceptron, with two hidden units, that detects whether 
a presented scale is major or minor.

A A# B C C# D D# E F F# G G#

Major = 1, Minor = 0

Hidden Units

Input Units
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4.1.2 What Do Hidden Units Do?

Why do hidden units make a multilayer perceptron capable of solving problems 
too complex for a simpler perceptron? One answer to this question is that hidden 
units detect higher-order features. A higher-order feature involves relationships 
among different input units considered simultaneously. By including units that can 
detect such higher-order features, networks become capable of solving much more 
complicated problems (Lippmann, 1989). Indeed, adding hidden units makes arti-
ficial neural networks as powerful as any universal computing machine of interest 
to cognitive science (Dawson, 2013; McClelland & Rumelhart, 1986; Rumelhart & 
McClelland, 1986b). Thus, we should never be surprised when such a network learns 
to solve a musical problem. Surprises must emerge instead from our investigation of 
the solution that the network has discovered, and from what it might tell us about 
music (Dawson, 2004).

4.1.3 Training Multilayer Networks

As was the case for the perceptron introduced earlier, I will train a multilayer per-
ceptron using a supervised learning rule that minimizes output unit error. Such 
learning rules modify a connection weight on the basis of two values: the activity 
from the unit at the input end of the connection, and the error computed for the 
unit at the output end of the connection (Dawson, 2004).

However, researchers encounter a problem when they attempt to define weight 
changes for any of the connections from an input unit in Figure 4-1 to either of the 
hidden units in this network. The activity at the input end of one of these connec-
tions is input unit activity. However, researchers have no idea what the error at the 
hidden unit end of the connection is. This is because they do not know in advance 
the responses that hidden units should make, and therefore they cannot define error 
in the same fashion as they do for the output unit.

The connectionist revolution that occurred in cognitive science in the 1980s 
(McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986b) began when 
researchers discovered a procedure for determining the error for any hidden unit 
in a multilayer perceptron. They found that a hidden unit’s error can be specified as 
the sum of error signals sent to it by each of the output units to which it is connected 
(Rumelhart et al., 1986). Each of these signals is an output unit’s error, scaled by the 
weight of the connection between the output and the hidden unit. In other words, 
output units send error signals backward through the network, and these signals 
determine hidden unit error, solving the credit assignment problem. Not surpris-
ingly, the learning rule for multilayer perceptrons is often called backpropagation of 



doi: 10.15215/aupress/9781771992206.01

The Scale Mode Network 71

error, or backprop for short. Because this rule is a generalization of the supervised 
learning rules for perceptrons, it is also known as the generalized delta rule.

4.1.4 Error Backpropagation

The generalized delta rule trains a multilayer perceptron to mediate a desired input/
output mapping. Before training begins, a network is a “blank slate”; all of its con-
nection weights, and all of the biases of its activation functions, start as small, 
random numbers. The generalized delta rule involves repeatedly presenting training 
patterns—input/output pairs—and then modifying weights; this was the case for 
perceptron training in Chapter 3.

In the generalized delta rule, a single presentation of an input/output pair pro-
ceeds as follows: The first step is to feed signals forward through the network. The 
multilayer perceptron’s input units are then activated in order to present it an input 
pattern. This in turn sends signals to hidden units, which compute their net input 
and then their activity. Next, the hidden units send signals to the network’s output 
units. The output units then compute their net input and activity. Output unit 
activities represent the network’s response to the input pattern.

Second, now that output units have been activated, it is possible to measure 
their response error by taking the difference between the desired activity and the 
observed activity for each output unit. This procedure is identical to that used to 
train perceptrons.

Third, an output unit’s error is used to modify the weights of its immediate con-
nections. Up to this point, there is no essential difference between the supervised 
learning of a multilayer perceptron and the supervised learning of a perceptron.

The fourth step differentiates backprop from the training of a perceptron. In 
this step, each hidden unit’s error is determined.This is accomplished by treating an 
output unit’s error as if it were activity, and sending it backward as a signal through a 
connection to hidden units. This signal is then multiplied by the weight of the output 
unit’s connections. Each hidden unit computes its error by summing together all of 
the error signals that it receives from all of the output units to which it is connected.

Fifth, once hidden unit error has been computed, the weights that feed into the 
hidden units can be modified using the same equation that was used to alter the 
weights of each of the output units. Training continues by presenting the next input/
output pair in the training set, and repeating the error backpropagation procedure.

The generalized delta rule for multilayer perceptrons was initially defined for 
processors that use the logistic activation function (Rumelhart et al., 1986). However, 
variations of the algorithm exist for training multilayer perceptrons that use value 
units (Dawson & Schopflocher, 1992).
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4.1.5 Design Decisions

One theme of this book is that artificial neural networks can only inform the cog-
nitive science of music after their internal structure is interpreted. With this goal in 
mind, I gear the design decisions toward discovering the simplest network capable 
of solving a musical problem. A simpler network is easier to interpret than a more 
complex network.

My first step in achieving this goal is to determine whether the simplest network 
—the perceptron—can solve the problem. In Chapter 3, we found that a value unit 
perceptron with µs held to zero could identify scale tonics. However, at the end of 
that chapter we also noted that a perceptron could not learn to classify an input 
scale as being major or minor.

In this second case, when a perceptron is not up to the task, I next proceed to 
explore the more powerful multilayer perceptron. This exploration involves the 
same sort of design decisions used when the perceptron was investigated (learn-
ing rate, initialization, activation function, etc.). However, multilayer perceptrons 
require additional design decisions, such as deciding how many hidden units to 
include in the network.

Determining the number of hidden units requires exploring the behaviour of a 
number of different-sized networks. Typically, one begins with an educated guess 
about how many hidden units should be included. If the multilayer perceptron per-
forms poorly on the problem (e.g., fails to learn it, stabilizes to very high error, etc.), 
then a different network that uses more hidden units is explored. If the network 
solves the problem quickly, then a network that uses fewer hidden units is trained. 
I may run many different simulations as I search for the simplest multilayer percep-
tron—that is, the one with the smallest number of hidden units—that I can reliably 
train to solve the problem of interest. Once I discover the simplest network for solv-
ing a musical problem of interest, I proceed to analyze its internal structure

4.2 Identifying Scale Mode

4.2.1 Task

My goal is to train an artificial neural network to distinguish major scales from 
harmonic minor scales—to identify scale mode. I present the network the same 
stimuli used to train the scale tonic perceptron in Chapter 3: either a major scale 
or a harmonic minor scale encoded using a pitch-class representation. I train the 
network to turn its single output unit “on” if the input pattern defines a major key, 
and to turn it “off” if the input pattern defines a minor key.
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4.2.2 Network Architecture

Seeking the simplest network for accomplishing this musical task proceeds along 
the lines described in Section 4.1.3. As mentioned at the end of Chapter 3, we cannot 
successfully train a perceptron to identify key type for these different input patterns. 
In accordance with Section 4.1.3, the next step is to discover the simplest multilayer 
perceptron that is capable of identifying scale mode. After exploring a variety of 
different networks, the network settled upon is the multilayer perceptron illustrated 
in Figure 4-1.

This multilayer perceptron uses 12 input units to represent the presence or 
absence of pitch-classes using the same encoding described in Chapter 3 for the 
scale tonic perceptron. (This is because I train both networks with exactly the same 
set of input patterns.) The network uses a value unit as its single output unit. The 
output unit is trained to turn “on” if a stimulus represents a major scale, and to turn 
“off” if a stimulus represents a harmonic minor scale. Finally, the network uses two 
hidden value units as intermediate processors between its input and output units. 
There are no direct connections between the input units and the output unit.

4.2.3 Training Set

The training set consists of 12 different major and 12 different harmonic scales 
represented in pitch-class (i.e., each input stimulus was one of the rows of numbers 
presented in Chapter 3 as Table 3-1). As was the case for the scale tonic perceptron, 
each input pattern is used to turn the network’s 12 different input units either “on” 
or “off” to indicate the presence or absence of the various pitch-classes. The desired 
response for an input pattern that represents a major scale is one, and the desired 
response for an input pattern that represents a harmonic minor scale is zero. 

4.2.4 Training 

The network is trained using the generalized delta rule developed for networks of 
value units (Dawson & Schopflocher, 1992) using the Rumelhart software program 
(Dawson, 2005). This program is available as freeware from the author’s website 
http://www.bcp.psych.ualberta.ca/~mike/AlienMusic/

During a single epoch of training each pattern is presented to the network once; 
the order of pattern presentation is randomized before each epoch.

All connection weights in the network are set to random values between −0.1 
and 0.1 before training begins. The µs of the output and hidden units are set to zero 
throughout training. I employ a learning rate of 0.01. Training proceeds until the 
network generates a “hit” for each of the patterns in the training set. I define a “hit” 
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as activity of 0.9 or higher when the desired response is one or as activity of 0.1 or 
lower when the desired response is zero.

The multilayer perceptron in Figure 4-1 quickly learns to identify scale mode, 
typically converging after between 350 and 475 epochs of training. The network 
described in more detail in the next section learns to solve the problem after 390 
epochs of training.

4.3 Interpreting the Scale Mode Network

How does the multilayer perceptron in Figure 4-1 detect the difference between 
a major scale and a harmonic minor scale, regardless of the scale’s tonic? In order 
to answer this question let us examine the hidden unit space that confronts the 
output unit, as well as the input pattern features detected by the two hidden units.

4.3.1 Hidden Unit Space

The two hidden units in the network must detect stimulus properties that permit 
the output unit to distinguish major keys from minor keys. In order to discover 
what features the hidden units detect, let us plot the hidden unit space for the 
network. Because the multilayer perceptron uses only two hidden units, its hidden 
unit space can be illustrated with a two-dimensional scatterplot as is shown in 
Figure 4-2. In a hidden unit space, each input pattern is plotted as a point on a 
graph. The hidden unit activities provide the coordinates of the point. For instance, 
in Figure 4-2 the activity the pattern produces in Hidden Unit 1 provides a point’s 
x-coordinate, and the activity the pattern produces in Hidden Unit 2 provides 
its y-coordinate. Hidden unit spaces are useful in interpreting network structure 
because output units can be viewed as solving a classification problem by “carving” 
the hidden unit space into different decision regions that separate one type of 
pattern (e.g., major scales in Figure 4-2) from another (e.g., minor scales in Figure 
4-2) (Pao, 1989; Ripley, 1996).

A number of regularities are evident in Figure 4-2. First, all of the patterns that 
represent major scales fall near the origin of this space. This means that major 
key stimuli tend to produce near-zero activity in both hidden units. This further 
suggests that the role of each hidden unit is to detect (to turn on to) some property 
that indicates that a stimulus is not related to a major key.

Second, all of the stimuli related to major scales appear to be highly similar 
to one another, because all cluster closely together in Figure 4-2. In contrast, the 
stimuli related to minor scales spread themselves a wide distance apart. The minor 
scale stimuli seem to all fall roughly in a diagonal line that falls downward from left 
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to right; there are distinct clusters of different stimuli along this line. An account 
of the features detected by the two hidden units should explain such regularities.

Figure 4-2 The hidden unit space for the scale mode network.

Third, in many instances different scales fall so close together in the hidden unit 
space that their plotted symbols fall on top of one another. For example, this is true 
for Dm and G♯m, and for Am and D♯m at the top left of Figure 4-2. This overlapping 
of symbols can make the graph harder to inspect. However, it is actually a visual 
property that reveals a key property of this hidden unit space: scales that seem quite 
different to us (like Am and D♯m) are actually nearly identical to one another as 
far as this network is concerned, which is why their coordinates in the hidden unit 
space are so close together.

4.3.2 Hidden Unit Weights

What features do the hidden units detect to determine that a stimulus represents 
a minor key and not a major key? In other words, what are the two hidden units 
detecting that permits them to position the different stimuli in the hidden unit 
space of Figure 4-2? In order to explore this issue let us examine the values of the 
weights connecting each of the input units to the hidden units.
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Figure 4-3 The connection weights between the 12 input units and each hidden 
unit in the scale mode network.

Figure 4-3 presents two bar plots, one illustrating the weights of the connections 
between the 12 input units and Hidden Unit 1, the other illustrating the same infor-
mation for Hidden Unit 2. These two patterns of connectivity determine when 
particular input patterns will cause either hidden unit to generate high activity, 
representing the presence of a minor key (as revealed by the Figure 4-2 hidden unit 
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space). Interpreting these connection weights should reveal what “minor scale fea-
tures” are being detected by each hidden unit.

There is a high degree of regularity in both of the graphs illustrated in Figure 
4-3. Exactly half of the pitch-classes in each plot have negative connection weights, 
and the other half have positive connection weights. Furthermore, the overall shape 
of each plot is identical, but the pattern for Hidden Unit 1 is “phase shifted” three 
pitch-classes to the left in the plot for Hidden Unit 2. Consider the pattern of bars 
for Hidden Unit 1 from D♯ onward to the right. The identical pattern is evident for 
Hidden Unit 2, but only if one begins with pitch-class C instead of D♯.

Relationships between weights in the same graph in Figure 4-3 reveal a striking 
property. Consider the two most extreme weights for Hidden Unit 1, the ones con-
necting this unit to incoming signals from A and D♯. Not only are the two weights 
the most extreme, but they seem almost equal in magnitude (although one weight 
is positive while the other is negative). These two pitch-classes are a musical interval 
of a tritone (six semitones) apart. If we compare other weights coming from input 
pitch-classes that are a tritone apart, then we see that this pattern repeats: these 
pairs of weights are roughly equal in magnitude but opposite in sign.

This same regularity is also evident in the Figure 4-3 plot of Hidden Unit 2 
weights. For instance, the two extreme weights (from C and from F♯) are roughly 
equal in magnitude but point in opposite directions, and again are separated by 
a tritone.

Figure 4-4 presents exactly the same connection weights shown in Figure 4-3, 
but aligns weights from pitch-classes a tritone apart. Plotting the weights in this 
fashion produces two graphs in which the upper bars are a mirror image of the 
lower bars. This clearly indicates that weights from any two pitch-classes that are a 
tritone apart have the same magnitude, but are opposite in sign. This means that, 
for either hidden unit, if two pitch-classes a tritone apart are both turned on then 
their signals will cancel each other out, producing a net signal of zero.

The notion that signals from different input units cancel each other out when 
received by a hidden unit is of particular importance given that the multilayer per-
ceptron in Figure 4-1 uses value units for hidden units. Recall that we define a value 
unit’s Gaussian activation function with one parameter, µ, and that for a value unit 
to generate maximum activity its net input must equal µ.

In the multilayer perceptron trained to distinguish major from harmonic minor 
scales, the value of µ for each hidden unit, and for the output unit, is zero. Thus for 
either hidden unit to generate a maximum response, the incoming signal from the 
input units must also equal zero. This is why the notion of two signals that cancel 
one another is of such import.
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Figure 4-4 Connection weights between input units and each hidden unit.

The connection weight pattern evident in Figure 4-4 suggests that both hidden 
units detect tritone balance. That is, the ideal stimulus (i.e., the input pattern that 
produces a maximum response) is one in which pairs of pitch-classes a tritone apart 
are balanced. In such a stimulus, two pitch-classes a tritone apart are in the same 
state: they are either both off or both on. When both pitch-classes are off, their input 
units send a zero signal through the two connections. When both pitch-classes are 
on, both send signals through the two connections. However, because the weights 
of the two connections are equal in magnitude but opposite in sign, their signals 
will again cancel out, contributing little to a hidden unit’s net input. Of course, it 
is possible for pairs of pitch-classes a tritone apart to be unbalanced. This occurs 
when one pitch-class is present in a stimulus but the corresponding pitch-class 
is not. In this situation, a definite positive or negative contribution will be added 
to a hidden unit’s net input. This is because when the tritone is not balanced, the 
signals from the two pitch-classes do not cancel out. As a result, the unbalanced 
tritone will shift net input away from µ, making it much more likely that a hidden 
unit will not respond.

Figure 4-2 indicated that the two hidden units detect features true of minor keys 
and not true of major keys. Our analysis of connection weights indicates that this 
feature is “tritone balance.” How do we relate this feature to the musical definition 
of major or minor keys?

 

-5

-1 -1

0

5

1 1

-5

0

5 
 

  
 

 

 

F

B
G

C#

E

A#

C

F#

D

G#

A

D#

D

G#
E

A#

C#

G

A

D#

B

F

F#

C

Input weights for Hidden Unit 1
arranged by tritones

Input weights for Hidden Unit 2
arranged by tritones



doi: 10.15215/aupress/9781771992206.01

The Scale Mode Network 79

4.4 Tritone Imbalance and Key Mode

Figure 4-5 Spokes in a circle of minor seconds used to represent the pitch-classes 
that define major and minor keys.

In Western music, there are six possible pairs of pitch-classes separated by a tri-
tone: [A, D♯], [A♯, E], [B, F], [C, F♯], [C♯, G], and [D, G♯]. In any stimulus presented 
to the network analyzed in the previous section, the more of these pairs that are 
balanced (i.e., their pitch-classes are both in the same state, on or off), the greater 
is the response of either hidden unit.

Why does the network use tritone balance to distinguish harmonic minor scales 
from major scales? Figure 4-5 provides an answer to this question. This figure is an 
alternative version of Figure 3-2, and depicts the pitch-class content of the A major 
and the A harmonic minor scales. Figure 4-5 differs from Figure 3-2 by indicating 
not only which pitch-classes are present in a scale (solid spokes) but also which 
pitch-classes are absent from a scale (dashed spokes).

Although Figure 4-5 provides only two example scales (A major and A minor), we 
saw in Chapter 3 that the two spoke patterns that it depicts can represent any major 
or harmonic minor scale respectively. This is because one can transpose one of the 
depicted scales into any other musical key by rigidly rotating the spoke pattern to 
a new orientation within the circle.

Figure 4-5 highlights the tritone relationships between corresponding pairs of 
pitch-classes. Two pitch-classes that are a tritone apart are directly opposite one 
another in the circle of pitch-classes. As a result, one can quickly inspect Figure 4-5 
for tritone balance. If a tritone pair is balanced, then the diameter through the wheel 
that connects its two pitch-classes will be constant in appearance. For instance, in 
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the A major diagram, the pair [D, G♯] balances because there is a single solid line 
connecting these two pitch-classes. In the A minor diagram, [D, G♯] and [B, F] are 
both balanced with a solid line, while [C♯, G] is balanced with a dashed line.

Recognizing that the two spoke diagrams in Figure 4-5 apply to any major or 
harmonic minor key respectively, two general properties are now apparent. First, 
major scales have almost no tritone balance. For any major scale, there will be one 
and only one balanced tritone. Second, for any harmonic minor scale, there will be 
three and only three balanced tritones. Two of these involve pairs of pitch-classes 
being present, while the third requires both members of a pitch-class pair to be 
absent. That this system requires a particular pair of pitch-classes a tritone apart to 
be missing is an interesting property discussed below in more detail in Section 4.5.2.

4.5 Further Network Analysis

4.5.1 Comparing Scale Geometries

Now that the hidden units of the scale mode network as tritone balance detectors 
have been interpreted, let us return to understanding the hidden unit space of 
Figure 4-2. In particular, let us explore the arrangement of the 12 harmonic minor 
scales in this space.

There is a long history of using spatial or geometric representations to highlight 
the relationships between musical entities (Hook, 2006; Krumhansl, 2005; Schoen-
berg, 1969; Tymoczko, 2006, 2011, 2012). When these techniques are used to map 
relationships between complex entities like musical scales, one feature that emerges 
is that major scales and minor scales tend to be mixed among one another. This is 
because similar scales will lie closer to one another in a musical space, and different 
kinds of scales can be similar to one another because they share many pitch-classes. 
For instance, the set of pitch-classes that defines the C major scale differs from the 
set that defines the A harmonic scale by only a single pitch-class. The C major scale 
set differs from those that define the C, D, and E harmonic minor scales by only 
two pitch-classes. Thus, one would expect that in a typical spatial representation C 
major would be near to these similar harmonic minor scales.

Figure 4-2 is interesting because it differs from this expected arrangement. 
Instead of surrounding minor scales with major scales as is seen in other spatial 
depictions (Schoenberg, 1969), the hidden unit space pulls minor scales away from 
the major scales at the graph’s origin. Such a clear difference between the hidden 
unit space and other traditional geometric representations is what makes the hidden 
unit space interesting. A second regularity in Figure 4-2 is not only that harmonic 
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minor scales spread along a line through the hidden unit space but also that there 
is a definite grouping of points along this line. In particular, points cluster together 
in pairs. This grouping is less evident in Figure 4-2 because in some cases paired 
points fall exactly in the same position. However, the pairing of points is obvious 
if one examines the coordinates of the minor scales in hidden unit space; Table 4-1 
provides these coordinates.

Table 4-1 Properties of the 12 harmonic minor scales and their position in hidden unit 
space.

Scale 
tonic

Hidden 
Unit 1 

activity

Hidden 
Unit 2 

activity

Balanced 
tritone 1

Balanced 
tritone 2

Balanced 
tritone 3

Unbal-
anced 
pitch- 

classes

Hidden 
Unit 1 un-
balanced 

signal

Hidden 
Unit 2 un-
balanced 

signal

G# 0 0.93 [A#, E] [C#, G] [C, F#] B, D#, G# 1.58 −0.16

D 0 0.92 [A#, E] [C#, G] [C, F#] A, D, F −1.59 0.16

A 0 0.84 [B, F] [D, G#] [C#, G] A, C, E −2.03 0.22

D# 0 0.84 [B, F] [D, G#] [C#, G]
A#, D#, 
F#

2.06 −0.25

A# 0.19 0.76 [C, F#] [A, D#] [D, G#] A#, C#, F 0.69 0.31

E 0.24 0.72 [C, F#] [A, D#] [D, G#] B, E, G −0.70 −0.31

C# 0.72 0.23 [A, D#] [C, F#] [B, F] C#, E, G# 0.29 −0.67

G 0.76 0.22 [A, D#] [C, F#] [B, F] A#, D, G −0.32 0.70

C 0.84 0 [D, G#] [B, F] [A#, E] C, D#, G 0.24 2.05

F# 0.84 0 [D, G#] [B, F] [A#, E] A, C#, F# −0.24 −2.05

B 0.92 0 [C#, G] [A#, E] [A, D#] B, D, F# −0.14 −1.55

F 0.92 0 [C#, G] [A#, E] [A, D#] C, F, G# 0.18 1.57

Note. Each row provides details for each scale, including the activity the scale produces 
in each hidden unit, the three balanced tritones, and the unbalanced pitch-classes. The 
final two columns provide the net input delivered to each hidden unit by the unbalanced 
pitch-classes.

Table 4-1 provides some additional information concerning the pairing of minor 
scales. It provides three columns (Balanced Tritone 1, 2, and 3) that list the three bal-
anced tritones for each minor scale. (Note that balanced tritones 1 and 3 are pairs of 
pitch-classes that are both present in a stimulus, while balanced tritone 2 is a pair 
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of pitch-classes that are both missing from the stimulus.) Examining these three 
columns in Table 4-1 reveals that pairs of points with identical or near-identical 
coordinates in Figure 4-2 represent two minor scales that have three identical bal-
anced tritones. For instance, in the hidden unit space the inputs for the F harmonic 
minor scale and the B harmonic minor scale both are located at position (0.92, 0). Both 
of these minor scales have the same balanced tritones: [C♯, G], [A, D♯], and [A♯, E].

The row shading in Table 4-1 highlights the pairing of minor scales. If two minor 
scales are adjacent in the table, and have the same shading, then they are paired in 
the sense that they are located nearly on top of each other in Figure 4-2. Examining 
the scale roots (Column 1) of rows paired in this way reveals an interesting musical 
property that emerges from hidden unit activities: paired minor scales have roots 
that are a tritone apart. For instance, the harmonic minor scales for G♯ and D are 
both located at (0, 0.93) in the hidden unit space, and G♯ and D are a tritone apart 
(i.e., opposite one another in Figure 4-6).

The proximity relations among minor scales in the hidden unit space are based 
on a definite musical property (shared balanced tritones), and produce a very regular 
pairing of scales. However, the balanced tritones property is an atypical musical 
regularity in comparison to more traditional spatial representations. As a result, the 
proximity relations in the hidden unit space are markedly different from proximity 
relations in more traditional spaces.

Consider the following set of harmonic minor scales: G♯m, Dm, Bm, and Fm. 
Traditional spatial representations would plot G♯m closer to Bm and Fm than to 
Dm. This is because it differs from the former two scales by only two pitch-classes 
but differs from the last one by three. Another way to consider the similarity is that 
the tonic (G♯) of G♯m is a minor third or three semitones away from the tonic of 
either Bm or Fm. However, the tonic of G♯m is a full tritone or six semitones away 
from the tonic of Dm. In a traditional spatial depiction of these four scales or keys, 
Dm is farther away from the other three.

Figure 4-6 provides two examples of spatial arrangements based on meas-
ures from traditional music theory. Multidimensional scaling (MDS) was used to 
analyze distances between scales (where distance is a function of the number of 
pitch-classes shared by two scales) into a spatial map in which scales that are similar 
to one another are located closer together. The left part of Figure 4-6 provides the 
two-dimensional MDS solution; it accounts for 58.1% of the variance in the original 
distance matrix. It places all of the major scales in a well-known musical pattern: the 
circle of perfect fifths. It also arranges the minor scales around a separate circle of 
perfect fifths, and places this circle inside the circle of major scales. The two different 
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circles of perfect fifths in this MDS solution have different orientations; for instance, 
the inner circle of harmonic minor scales is oriented so that the two scales closest 
to A major are F♯ minor and B minor. Note that within this MDS solution G♯m is 
closer to Bm and Fm than it is to Dm.

Figure 4-6 A two-dimensional and a three-dimensional multidimensional scaling 
solution that arranges scales associated with different keys in a spatial map.
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The right side of Figure 4-6 presents the three-dimensional MDS solution for the 
scale distances matrix. The added dimension improves the fit to the data; it accounts 
for 69.2% of the variance in the original distance matrix. The third dimension pulls 
different sets of minor scales away from one another in the vertical direction. At the 
top of the cube one finds D♯m, Cm, Am, and F♯m; in the middle of the cube G♯m, 
Fm, Dm, and Bm; at the bottom of the cube C♯m, G♯m, Gm, and Em. Once again, 
G♯m is closer to Bm and Fm than to Dm. There is also some vertical separation 
between major scales in this solution, but all are generally positioned outside and 
around the middle of the cube. What is the relationship between the two MDS solu-
tions in Figure 4-6? It appears that if one were to project the positions of the scales 
in three-dimensional MDS solution down to the bottom plane of the cube, the result 
would be the two circles of perfect fifths that are apparent on the left of Figure 4-6.

Now let us compare the spatial arrangements of scales based on traditional 
theory (Figure 4-6) with the spatial arrangements of scales in the hidden unit space 
(Figure 4-2). In particular, let us continue to focus upon the four minor scales G♯m, 
Bm, Fm, and Dm. The spatial relationships between these four harmonic minor 
scales are quite different in the hidden unit space. First, rather than being farther 
apart, scales whose roots are a tritone apart (G♯m and Dm, or Bm and Fm) have 
nearly identical locations in Figure 4-2. Second, rather than being closest to scales a 
minor third away, scales that differ by this amount are very far apart in the hidden 
unit space. In particular, the points for G♯m and Dm are the two that are farthest 
away from the points for Fm and Bm in Figure 4-2. Table 4-1 shows the coordinates 
for the latter two scales are the reflection of the coordinates of the former [(0.92, 0) 
vs. (0, 0.92)]. Why are different scales with similar balanced tritone structure so far 
apart in Figure 4-2? The three pitch-classes that are not part of a balanced tritone 
must be responsible.

When we present a harmonic minor scale to our multilayer perceptron, the 
three unbalanced pitch-classes are in essence the only source of net input to either 
hidden unit. This is because all other pitch-classes are balanced, and therefore have 
near zero to net input. The final three columns of Table 4-1 provide information 
regarding the effects of unbalanced pitch-classes on a scale’s position in the hidden 
unit space.

The first of these three columns simply lists, for each harmonic minor scale, the 
three pitch-classes that are unbalanced. The remaining two columns provide the 
net input to each hidden unit that is only due to the three unbalanced pitch-classes. 
These columns reveal some interesting properties concerning the spatial arrange-
ment of the hidden unit space.
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First, consider two scales that have identical balanced tritones (e.g., Fm and 
Bm). These two scales differ from one another in terms of their three unbalanced 
pitch-classes. For Fm these are F, G♯, and C, and for Bm these are B, D, and F♯. Look 
in Table 4-1 at the net inputs that each of these unbalanced sets produces in each 
hidden unit. One of these sets produces net inputs that are essentially equal in mag-
nitude, but opposite in sign, to the net inputs produced by the other set. Remember 
that the symmetric form of the Gaussian activation function means that it in essence 
ignores the sign of net inputs. Thus while these two different sets of unbalanced 
pitch-classes send different net inputs to the hidden units, the hidden units generate 
the same activity to either set, so the two patterns wind up in the same position in 
the hidden unit space. This account holds for any of the paired scales in Table 4-1

Now consider a different pair of scales, G♯m and Dm, whose balanced tritone 
structure is similar to that of Fm and Bm. The unbalanced pitch-classes for G♯m 
and Dm produce the same magnitude of net input (ignoring sign) to the hidden 
units as do the unbalanced pitch-classes for Fm and Bm. However, they send this 
magnitude to the opposite hidden units! As a result, the position of these two scales 
is reflected in the hidden unit space (i.e., the coordinates [x, y] of Fm and Bm become 
the coordinates [y, x] of G♯m and Dm).

This analysis leads to two general musical statements about the positioning of 
harmonic minor scales along the line through hidden unit space. First, two scales 
whose roots are a tritone apart will have the same position on this line. Second, 
two scales whose roots are a minor third apart will fall at positions reflected across 
the centre of this line.

The discussion of the geometry of Figure 4-2 in this section indicates that while 
the proximity relations in Figure 4-2 (made clear in the Table 4-1 coordinates) are 
quite different than traditional ones (e.g., Figure 4-6), they are based upon musical 
structure. The atypical arrangement of scales in the hidden unit space is a conse-
quence of the multilayer perceptron detecting a particular musical feature, balanced 
tritones. Because of this musical regularity, scales that typically are viewed as being 
distantly related become highly similar, and scales that are typically viewed as being 
highly similar become distantly related. In short, paying attention to the hidden unit 
space can reveal novel properties that are still completely consistent with formal 
music theory.

4.5.2 The Missing Balanced Tritone

The hidden units of the scale mode network detect tritone balance. This property, 
reflected in the connection weights from input units to hidden units (Figure 4-4), 



doi: 10.15215/aupress/9781771992206.01

86 Connectionist Representations of Tonal Music

recognizes that a harmonic minor scale contains three sets of balanced tritones, 
two of which are present in the scale; the third pair is balanced because its two 
pitch-classes are both absent. This balance is critical for the function of the hidden 
units: balanced tritones contribute little to hidden unit net input, and therefore 
cause high hidden unit activity because the µ of each Gaussian activation function 
is zero. This in turn causes the arrangement of minor scales in the Figure 4-2 
hidden unit space.

The tritone that balances because both of its pitch-classes are absent is critical 
to the ability of hidden units to separate harmonic minor scales from major scales 
in the hidden unit space. It also provides an interesting twist on music theory. This 
is because the necessary absence of tritones is not a traditional component of music 
theory. For instance, consider using mathematical set theory to explore musical 
formalisms (Forte, 1973; Roig-Francolí, 2008; Straus, 2005). One contribution of 
set theory is the ability to generate, for some set of pitch-classes, a six-dimensional 
vector called an interval class vector or an ic vector. An ic vector provides informa-
tion about the frequency of occurrence of different musical intervals in a musical 
entity, where a musical interval is the distance between two pitch-classes measured 
in semitones. In Forte’s system, the set of pitch-classes that define any harmonic 
minor scale produces the ic vector 335442. The last digit in this ic vector indicates 
the presence of two tritone intervals (i.e., in terms of Figure 4-5 two balanced pairs 
of tones present in the scale). Similarly, the ic vector for any of the major scale 
stimuli presented to the scale mode network is 253461. Its last digit indicates that a 
major scale includes only a single pair of pitch-classes a tritone apart, as was earlier 
illustrated in Figure 4-5. In other words, ic vectors make explicit the well-known 
property that a major scale includes only a single tritone interval. It might be tempt-
ing to conclude that the scale mode perceptron simply uses the number of present 
tritones to distinguish the major mode from the harmonic minor mode.

Importantly, what the ic vector for a harmonic minor scale fails to make explicit 
is the absence of the two additional pitch-classes that represent the third balanced 
tritone (e.g., the absence of both C♯ and G in the A harmonic minor diagram in 
Figure 4-6). Identifying which pitch-classes are absent from a musical object might 
be an odd way for a human musical analyst to think about musical scales, but it arises 
naturally in this artificial neural network. Indeed, when the nature of the absent bal-
anced tritone is considered, we encounter some interesting music theory insights.

In Section 4.5.1, we noted that the arrangement of minor scales in Figure 4-2 
was affected by the three pitch-classes that are not part of a balanced tritone. For 
each harmonic minor scale, Table 4-1 provides the three unbalanced pitch-classes 
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in its final three columns. From the perspective of music theory, the unbalanced 
pitch-classes suggest an elegant and simple musical interpretation: they are the 
three pitch-classes that define the minor triad of the harmonic scale. This means 
that for the minor stimuli, Figure 4-2 also provides a spatial arrangement not of 
harmonic minor scales but instead of minor triads.

Other spatial representations have been developed to represent the relationships 
between triads or chords (Hook, 2006). In Hook’s Tonnetz, each node represents a 
triad; connections between nodes represent a possible progression from one triad to 
another. Furthermore, each connection between nodes represents an efficient voice 
leading. This is because linked triads share two pitch-classes, even though they are 
opposite in mode (i.e., minor vs. major). In other words, Hook’s (2006) representa-
tion is similar to the scale relations that we considered earlier to create Figure 4-6.

Figure 4-7 The structure of Hook’s (2006) Tonnetz for triads.

The nearest neighbours of triads aligned in the same row in Figure 4-7 are related 
by a short musical interval (a minor third); the nearest neighbours of Bm are G♯m 
and Dm. Furthermore, triads related by a longer musical interval are not nearest 
neighbours. For instance, Bm and Fm are farther apart in Figure 4-7.

We are now in a position to contrast the spatial arrangement of triads in Figure 
4-7 with the hidden unit space of Figure 4-2. It was noted above that a consequence 
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of the missing balanced tritone is that the positions of harmonic minor scales in 
the hidden unit space also provide the positions of minor triads. The proximity 
relations among minor triads in the hidden space are quite different from those in 
the triad Tonnetz. In particular, minor triads that are farther apart in Figure 4-7 
occupy identical locations in the hidden unit space (e.g., Bm and Fm). In addition, 
nearest neighbours in the triad Tonnetz are quite far apart in the hidden unit space. 
For instance, G♯m and Dm, the two triads closest to Bm in Hook’s space, are the 
farthest away from Bm in the hidden unit space. Of course, the fact that the hidden 
unit space arranges minor triads in a line, while Hook’s Tonnetz arranges them in 
a grid, is another crucial difference between the two. None of these differences 
between the two spaces should be particularly surprising: hidden unit space loca-
tions reflect tritone structure, while Hook’s (2006) triad Tonnetz bases proximity 
in terms of shared pitch-classes.

If we interpret the hidden unit space as establishing certain proximity relations 
among minor triads, and these differ from those in traditional geometric models of 
harmonic progression or voice leading, then what does the hidden unit space imply 
about chord progressions? The key feature of the hidden unit space is that two minor 
triads that are a tritone apart have the same location, and therefore are equivalent. 
In terms of progressions, this suggests that one can easily change from one triad 
to another that is a tritone away. Interestingly, this implication of the hidden unit 
space parallels the tritone’s relevance to jazz.

One common technique to add variety to jazz chord progressions is the use of 
chord substitutions. In this practice, one chord in the progression is replaced with 
another musically related chord. For example, in tritone substitution a dominant 
seventh chord in one key is replaced with the dominant seventh chord from a key 
that is a tritone away. This is possible because both dominant seventh chords con-
tain the same two notes a tritone apart, making the original changes harmonically 
similar to the changes created by the tritone substitution (Tymoczko, 2008).

Tritone substitution is possible (i.e., sounds musically correct) in jazz because 
the two dominant seventh chords contain exactly the same tritone, and the two 
keys a tritone apart share enough pitch-classes to make them harmonically simi-
lar (Tymoczko, 2008). In certain respects, the multilayer perceptron is detecting 
analogous structure in harmonic minor scales, organizing them in such a way that 
the nearest neighbour to a minor scale in the hidden unit space will be a scale with 
identical underlying tritone structure. Interpreting these scale positions as being 
the positions of minor triads reveals that the hidden unit space of the multilayer 
perceptron may have a special affinity for tritone substitution.
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4.6 Summary and Implications

This chapter explored the properties of a multilayer perceptron trained to identify 
the mode of a stimulus scale (major or harmonic minor). A network that employed 
two hidden value units accomplished this task. Further investigation of the inter-
nal structure of this network revealed that both hidden units detected a particular 
property: tritone balance. The network learned that harmonic minor scales have 
three balanced tritones while a major scale has only one.

The scale mode network’s musical theory departs from traditional theory. In par-
ticular, the functioning of this network depends upon an absent balanced tritone: 
two pitch-classes, separated by a tritone, which are both missing from a harmonic 
minor scale. Furthermore, by considering this tritone in combination with the two 
present balanced tritones we discovered that the only unbalanced pitch-classes in 
a harmonic minor scale define a minor triad. This observation is a new addition to 
music theory.

The most telling indication that the network’s emphasis on balanced tritones 
represents a departure from traditional music theory is to consider that it leads to 
a spatial arrangement of scales (and of minor triads) that is markedly different from 
those based on traditional notions of musical relationships like shared pitch-classes. 
Figures 4-6 and 4-7 arrange musical entities in a map whose distances reflect the 
number of shared pitch-classes. Both of these maps interweave major and minor 
musical elements. In contrast, the spatial arrangement the network provides—its 
hidden unit space illustrated in Figure 4-2—is markedly different. Major and minor 
musical elements do not interweave; instead, a linear arrangement of minor har-
monic scales reveals distance relationships based on shared tritone structure instead 
of shared pitch-classes.

The novel spatial arrangement of scales that the network reveals provides some 
interesting suggestions regarding composing music. One fundamental principle of 
composition is modulation, in which a rational structure is used to change from 
one musical key to another midway through a piece. Schoenberg’s (1969) spatial 
map of keys provides a spatial guide to such modulation. One can modulate from 
the current musical key to another nearby in the map without musical disruption 
because keys that are near one another in the map have shared properties (e.g., they 
have many pitch-classes in common).

The proximity relationships between minor scales in the hidden unit space of 
Figure 4-2 space suggest an alternative approach to explore for modulating between 
minor keys. In particular, the hidden unit space suggests that one may be able to 
modulate between one minor key and another that is a full tritone away, not because 
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of shared pitch-classes but instead because of shared balanced tritones. Further-
more, the hidden unit space suggests the possibility of successful modulation to 
keys other distances away, because these scales are close to one another in the 
hidden unit space. For instance, G♯m and Dm are closest to D♯m and Am in the 
space. Modulating from G♯m to D♯m is part of common practice (these two keys 
are a perfect fifth apart), as does modulating from Dm to Am (these two keys are 
a perfect fourth apart). However, the same geometry suggests less typical modu-
lations a minor second apart: from G♯m to Am, or from Dm to D♯m. The hidden 
unit space, like more traditional spatial representations, is a source of alternative 
compositional ideas.
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5

Networks for Key-finding

5.1 Key-Finding

5.1.1 Key-Finding Outlined

As was noted earlier in Chapter 1, one of the most important discoveries about 
music cognition is that listeners mentally represent music using a tonal hierarchy 
(Krumhansl, 1979, 1990a; Krumhansl, Bharucha, & Kessler, 1982; Krumhansl & Shep-
ard, 1979). The tonal hierarchy organizes the pitches of a particular key to reflect 
the fact that some are more important than others are, and that other tones must 
be considered in relation to these stable pitches. For instance, if a musical context 
establishes a specific musical key, then the best-fitting note is the tonic of that key 
(i.e., the pitch in position 1 of the scale). For example, in the musical key of C major 
the note C is the most stable. The next best tones are those in either the 3 or 5 pos-
itions of the key’s scale. In the key of C major, these are the notes E or G. Less apt 
than these two notes are any of the set of remaining notes that belong to the scale. 
In the context of C major, these are the notes D, F, A, or B. Finally, the least stable 
tones are the set of five pitch-classes that do not belong to the context’s scale. For 
C major, these are C♯, D♯, F♯, G♯, and A♯.

Krumhansl (1990a) employs the tonal hierarchy as the basis for a cognitive theory 
of music perception. Her central claim is that music perception does not simply 
depend upon music’s acoustic properties but also depends upon the mental organ-
ization of musical sounds. Listeners have precise knowledge about the structure 
of tonal music, and use this knowledge to understand music. One consequence of 
Krumhansl’s theory is that listeners must possess a fundamental ability to identify 
the tonal centre of music. If one cannot identify a musical key, then one cannot 
use tonal hierarchies to organize music. Human listeners are indeed able to infer 
musical key on the basis of very little musical evidence (Butler, 1989).

Given the importance of the tonal hierarchy in musical cognition, and the 
consequent importance of identifying tonal centres, it is not surprising that many 
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researchers propose theories about how listeners identify musical keys. We call 
these theories about key-finding or tonal implication. When one hears a musical 
selection in the key of C major, what procedure does one use to infer that the piece 
is indeed in that key, to permit using the C major tonal hierarchy to understand 
the selection’s tonal structure? A key-finding theory aims to answer this question.

One influential theory of key-finding is proposed by Krumhansl and Schmuck-
ler, and described in detail in Krumhansl’s seminal work Cognitive Foundations of 
Musical Pitch (Krumhansl, 1990a). This algorithm, described in more detail later 
in this chapter, compares a musical input to templates associated with different 
musical keys. These templates are derived from the probe-tone method. The tem-
plate that provides the best match to the musical input is used to assign a key 
to the input. Variations of this algorithm have also been proposed; they maintain 
its general character but include technical modifications to improve performance 
even further (Albrecht & Shanahan, 2013; Shmulevich & Yli-Harja, 2000; Temperley, 
1999, 2007). The model also has status as a cognitive theory of key-finding with 
support from psychological experiments (Frankland & Cohen, 1996; Schmuckler 
& Tomovski, 2005).

Other key-finding theories also exist. Some propose that listeners detect the 
presence of rare musical intervals like the tritone (Brown & Butler, 1981; Browne, 
1981; Butler, 1989). Others describe algorithms that match musical inputs to particu-
lar musical patterns, such as specific key-implying pitch sequences (Handelman & 
Sigler, 2013; Holtzman, 1977), positions in a geometric space defined by pitch-class 
coordinates (Albrecht & Shanahan, 2013), or pitch-classes that belong to particular 
major or minor scales (Longuet-Higgins & Steedman, 1971; Vos & Van Geenen, 1996). 
This chapter explores still other approaches to key-finding: algorithms based upon 
artificial neural networks.

5.1.2 One Network for Key-Finding

A key-finding procedure must accomplish two different tasks. First, when presented 
a musical stimulus, it must judge the tonic of the stimulus’s musical key. Second, 
it must judge the mode (major vs. minor) of the key. The perceptron described in 
Chapter 3 identifies the tonic of a presented musical scale but does not identify 
mode. The multilayer perceptron described in Chapter 4 identifies the mode of 
a presented musical scale but does not identify tonic. Thus, neither network is a 
candidate for a key-finding algorithm.

One could merge these two networks together, unaltered, to create a system 
capable of identifying both tonic and mode. This merging is possible because both 
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networks use identical input representations and are trained on identical patterns; 
but the tonic judgment of the perceptron is accomplished by a set of connection 
weights and output units that are completely independent of the connection 
weights, hidden units, and output unit of the multilayer perceptron.

However, it is not typical for connectionist researchers to train different net-
works on task components, and then sew them together into a working whole like 
Frankenstein’s monster. Instead, a more typical approach is to train a single artificial 
neural network to accomplish the entire task at once. This chapter explores two 
such networks for key-finding.

5.2 Key-Finding with Multilayered Perceptrons

Figure 5-1 A multilayer perceptron that uses four hidden units to detect both the 
mode and the tonic of presented major or harmonic minor scales.
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To begin our exploration of key-finding with artificial neural networks, let us con-
tinue to train a network to generate responses when using musical scales as stimuli 
(i.e., the sets of pitch-classes from Table 3-1). In Chapter 3, a perceptron learned to 
output the tonic for each of these stimuli, while in Chapter 4 a multilayer percep-
tron learned to output the mode. The first network to be described in the current 
chapter is a multilayer perceptron (Figure 5-1) that learns to respond with both the 
mode and the tonic of each of these scales.

5.2.1 Task

The goal is to train a single artificial neural network to identify both the tonic and 
the mode when presented either a major scale or a harmonic minor scale. Given a 
main result of Chapter 3—that a multilayer perceptron was required to detect scale 
mode—the network of interest in this section uses a layer of hidden units to solve 
this problem.

 5.2.2 Network Architecture

Figure 5-1 illustrates a multilayer perceptron for the scale-based version of the 
key-finding problem. It uses 13 output units to represent scale mode and tonic and 
uses 12 input units to represent the pitch-classes that belong either to a major or to 
a harmonic minor scale. Pilot simulations revealed that this network requires four 
hidden units to solve this problem. All of these hidden units, and all of the output 
units, are value units.

 5.2.3 Training Set

The training set consists of 12 different major and 12 different harmonic scales repre-
sented in pitch-class format (i.e., each input stimulus is one of the rows of numbers 
presented in Chapter 3 as Table 3-1). The representation of inputs is identical to 
that described earlier in Chapters 3 and 4. The representation of outputs uses 13 
value units to combine the representations used by the Chapter 3 perceptron and 
by the Chapter 4 multilayer perceptron. One output unit is trained to turn on if a 
presented scale is major, and to turn off otherwise. The remaining output units each 
represent a possible scale tonic; the network is trained to turn the unit representing 
the correct tonic on and to turn the other tonic units off.

5.2.4 Training

The network is trained with the generalized delta rule developed for networks of 
value units (Dawson & Schopflocher, 1992) using the Rumelhart software program 
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(Dawson, 2005). All connection weights in the network are set to random values 
between −0.1 and 0.1 before training begins. The µs of the output and hidden units 
are all initialized to zero, but are modified as training proceeds. A learning rate 
of 0.01 is employed. Training occurs until the network generates a “hit” for every 
output unit for each of the patterns in the training set. Again, a “hit” is defined as 
activity of 0.9 or higher when the desired response is one or as activity of 0.1 or lower 
when the desired response is zero. The multilayer perceptron described in more 
detail in the next section learns to solve the problem after 6801 epochs of training.

5.3 Interpreting the Network

5.3.1 Carving Hidden Unit Space

In general, multilayer perceptrons solve classification problems by using output 
units to carve a hidden unit space into various decision regions. All of the output 
units in the Figure 5-1 network are value units. A value unit carves a hidden unit 
space into three areas using two parallel straight cuts. Patterns that fall between 
the two cuts (which are very close together) turn the unit “on,” and patterns that 
fall outside the cuts turn the unit “off.” In order for the multilayer perceptron 
to solve the key-finding problem, its hidden units must arrange patterns in a 
hidden unit space so that the output unit for mode can separate any major scale 
from all of the harmonic minor scales. This arrangement must also permit a 
tonic output unit to separate the two scales that have its tonic as a root from all 
of the other scales.

It is easy to imagine hypothetical hidden unit spaces that permit the output units 
to operate in this fashion. Figure 5-2 illustrates a hypothetical two-dimensional 
space. It arranges the scales in order by root, so that scales that have the same root 
are side by side. It also arranges the scales by type, so that all the major scales line 
up on the left, and all the harmonic minor scales line up on the right. As illustrated 
in Figure 5-2, this arrangement can easily be carved to identify C major by having 
the mode output unit “carve out” the major scales vertically, and by having the tonic 
output unit for C carve the two C scales out horizontally.

In order to solve the problem with the hypothetical space illustrated in Figure 
5-2, network training must accomplish two things. First, the connection weights 
between the input units and the hidden units have to take on values that permit the 
hidden units to position the scales in appropriate locations in the space. Second, the 
connection weights between the hidden units and the output units have to take on 
values that permit the output units to carve the space appropriately.
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Figure 5-2 A hypothetical two-dimensional hidden unit space for key-finding.

A two-dimensional space (e.g., the one illustrated in Figure 5-2) does not provide 
the only possible solution for the key-finding problem. The fact that four hidden 
value units are required to permit the multilayer perceptron of Figure 5-1 to con-
verge to a solution indicates that it needs a four-dimensional hidden unit space to 
classify the different scales. Let us take a moment to consider the properties of the 
four-dimensional hidden unit space obtained from the trained multilayer percep-
tron. This hidden unit space contains 24 different points, one for each stimulus scale. 
The four-dimensional coordinates of each point are the four activities produced in 
the network’s hidden units by a particular stimulus.

The problem with a four-dimensional hidden unit space is that it is impos-
sible to visualize. However, we can understand a portion of its structure by 
considering lower-dimensional visualizations. For example, Figure 5-3 presents a 
three-dimensional visualization of part of this hidden unit space by plotting the 
positions of scales in a cube using activities of Hidden Units 1, 2, and 4 to provide 
the coordinates of each scale in the space.

In the discussion of Figure 5-2, I observed that it was necessary to arrange the 
major scales so that they are separable from all of the harmonic minor scales. Figure 
5-3 indicates that the hidden unit space for the multilayer perceptron achieves this 
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goal. Note that all of the major scales arrange themselves in a group near the front 
of the cube. The dashed lines suggest where this cube could be carved to separate 
these scales, which turn the output unit on, from all of the harmonic minor scales 
that are spread elsewhere in the space and which turn the unit off.

Figure 5-3 A three-dimensional projection of the four-dimensional hidden unit 
space for the key-finding multilayer perceptron.

In the earlier discussion of Figure 5-2, it was noted that a major scale and a har-
monic minor scale with the same root must be positioned in the hidden unit space 
so that a single unit (the output unit for their tonic) could separate both from all of 
the other scales. Figure 5-4 presents a second three-dimensional projection of the 
four-dimensional hidden unit space that attempts to show how it arranges different 
scales based upon the same root. It uses Hidden Unit 1, 2, and 3 activities to provide 
the coordinates of each scale in the cube. An examination of Figure 5-4 indicates 
that different scales with the same tonic are aligned in the cube in such a way that 
they can be separated from the others by the two parallel cuts of a value unit. The 
dashed lines in Figure 5-4 provide a sense of how this might be accomplished for 
the tonic F♯. Importantly, there is no requirement that one tonic output unit in the 
multilayer perceptron carve the hidden unit space in a fashion that is related to the 
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carving made by other output units (e.g., making cuts at different positions but in the 
same direction). Thus from the perspective illustrated in Figure 5-4 there is no com-
pelling arrangement of all of the scales (e.g., around a circle of minor seconds). All 
that is required in this space is that one hidden unit can separate two locations (the 
locations of the major and minor scale with the same tonic) from all of the others.

Figure 5-4 A different three-dimensional projection of the four-dimensional 
hidden unit space for the key-finding multilayer perceptron.

5.4 Coarse Codes for Key-Finding

The foregoing discussion emphasized hidden unit space regularities. In particular, 
it focused on the arrangement of the different scales in a four-dimensional hidden 
unit space in order to permit output units to isolate particular scales for generating 
correct responses for the key-finding task. We now turn to a related topic: What 
musical features does each of the four hidden units detect? 

Some of the seminal advances in neuroscience were made possible by presenting 
stimuli to the sensory systems of animals while recording responses from individual 
neurons (Hubel & Wiesel, 1959; Lettvin, Maturana, McCulloch, & Pitts, 1959). With 
this technique, it is possible to describe a neuron as being sensitive to a trigger 
feature, a particular pattern which, when presented, produces maximum activity 
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in the cell. This success, in turn, led some researchers to propose a neuron doctrine 
for research on perception (Barlow, 1972, 1995). Adherents to the neuron doctrine 
believed that a complete theory of perception would result from knowing the trigger 
features of each perceptual neuron. One can attempt to apply the neuron doctrine 
to the interpretation of artificial neural networks by identifying those stimuli that 
produce maximum activity in each of a network’s hidden units (Dawson, 2004, 2013).

In order to explore the trigger features of the four hidden units of Figure 5-1, 
one can wiretap them by recording the activity produced in each hidden unit by 
each pattern in the training set. Given the nature of the key-finding problem, one 
might expect that some hidden units are dedicated to detecting properties related 
to scale tonics, while others specialize in detecting properties related to scale modes.

Figure 5-5 presents the wiretapping results. Each panel of the figure presents the 
results for one hidden unit. The length of each horizontal bar provides the activity 
produced by one stimulus. The stimuli are grouped by tonic, with the major scale 
on the left and the minor scale on the right. Note that activity ranges from zero to 
one in both directions across the figure.

Figure 5-5 indicates that the hypothesis that the four different hidden units are 
specialized is mistaken. There is no indication that some hidden units detect scale 
mode and that others detect scale tonic. Instead, all four hidden units respond to 
a subset of tonics, and generate strong responses to a subset of scales that includes 
both majors and harmonic minors. In other words, the wiretapping does not reveal 
any illuminating trigger features.

Consider Hidden Unit 1, the upper left panel of Figure 5-5. It prefers harmonic 
minor scales, because there seems to be more black displayed by the bars on the 
right than there is grey displayed by bars on the left. However, it does not respond 
to every minor scale: it produces no activity to Bm, and produces minimal activity 
to A♯m, C♯m, and F♯m. Furthermore, it generates strong activity to some of the 
major scales (D♯, G, and G♯). In short, if this hidden unit is a scale mode specialist, 
then it is not a very accurate one.

It is also the case that Hidden Unit 1 does not appear to be successful in the spe-
cialized role of tonic detector. It generates strong responses to four tonics (C, D♯, G, 
and G♯) regardless of scale mode and generates very weak responses to several other 
tonics (B, C♯, and F♯). In some instances (F) it responds to the major scale with this 
tonic, but hardly responds at all to the harmonic minor scale with the same tonic.

An examination of Figure 5-5 indicates that similar stories are true of the other 
three hidden units as well. They tend to have a general preference for one scale mode 
or the other, but can generate strong responses to either. They tend to have high 
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activations to some tonics and not others, but sometimes activate to a tonic in one 
scale mode but fail to activate to the same tonic in a different scale mode. Individ-
ually, none of the hidden units seems eminently useful for solving the key-finding 
problem. However, collectively they are all important, because the multilayer per-
ceptron uses these hidden units to converge to a solution. How is it possible for 
hidden units to be individually poor at representing a problem’s solution, but col-
lectively successful?

Figure 5-5 The results of wiretapping each hidden unit, using the 24 input 
patterns as stimuli.
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Figure 5-5 suggests one answer to this question. Let us consider the four hidden 
units in terms of tonic identification. Imagine a scale stimulus that produces little 
activity in Hidden Unit 1, moderate activity in Hidden Units 2 and 3, and high activ-
ity in Hidden Units 4. What is the tonic and mode of this scale? For Hidden Unit 
1, several scales produce activity of 0.1 or lower, such as: C♯, Bm, F♯, B, F, A♯, and 
F♯m. For Hidden Unit 2, a different subset of stimuli generates moderate activity 
between 0.29 and 0.61: Am, C♯m, Gm, E, F♯m, A♯, and B. Activity in this same middle 
range for Hidden Unit 3 is produced by yet another subset of patterns: F, F♯m, F♯, 
Bm, and D♯. Finally, high activity (0.75 or greater) is produced in Hidden Unit 4 by 
F♯m, Dm, C♯m, Am, G♯m, F♯, Cm, and D.

What do all of these four different subsets have in common? One can take this 
question literally by examining the four different subsets of scales provided in the 
preceding paragraph: [C♯, Bm, F♯, B, F, A♯, F♯m], [Am, C♯m, Gm, E, F♯m, A♯, B], 
[F, F♯m, F♯, Bm, D♯], and [F♯m, Dm, C♯m, Am, G♯m, F♯, Cm, D]. To ask, “what do 
these sets have in common?” is to ask, “what is the intersection of the four subsets 
taken together?” By examining the four subsets, we discover that there is only one 
scale present in all four: F♯m. In other words, a stimulus that produces low activity 
in Hidden Unit 1, medium activity in Hidden Units 2 and 3, and high activity in 
Hidden Unit 4 must be a scale that has F♯ as its tonic and is of minor mode.

This account of how the four inaccurate hidden units can successfully isolate 
a single scale is an example of coarse coding. Coarse coding is an example of a 
distributed representation, which is one of the more interesting and important 
contributions of connectionism to cognitive science (Hinton, McClelland, & Rumel-
hart, 1986; Van Gelder, 1991). Coarse coding involves individual processors that 
are inaccurate detectors of some property or feature. For instance, a hidden unit 
might be inaccurate because it is broadly tuned, and can be activated either by a 
wide range of features or by wide range of levels of a specific feature (Churchland & 
Sejnowski, 1992; Hinton et al., 1986). Alone, such processors are not adept at solving 
classification problems.

However, if one combines the responses of many such poor detectors, then 
overall accuracy can be markedly enhanced. Typically, this requires that these poor 
detectors each have a slightly different view of the problem. That is, in coarse coding 
each processor is expected to evaluate different but overlapping ranges of stimuli. 
Each processor’s response will be a combination of signal (the correct answer) and 
noise (additional incorrect responses). Processors with different perspectives on 
the problem will capture the same signal but will also likely capture different noise. 
When responses are pooled together, the different patterns of noise will cancel each 
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other out, leaving only the correct answer. The intersection-of-subsets example 
above illustrates this general principle.

5.4.1 Implications

Our discussion of Figure 5-5 indicates that the hidden units transform the input 
pattern space via coarse coding. Discovering coarse coding in a network causes 
difficulties that were absent from the network interpretations we saw in previ-
ous chapters. A consequence of coarse coding is that it may be difficult, if not 
impossible, to relate network structure to formal music theory. It is very difficult 
to simply examine the patterns of bars in Figure 5-5 and easily discover musical 
structure. The reason for this is that coarse codes seem to be the antithesis of 
formal musical entities: they are fuzzy, messy, noisy, and poorly defined. Coarse 
coding is in fact one property of artificial neural networks that connectionists 
use to champion connectionist cognitive science as an alternative to classical 
cognitive science.

In the 1950s, classical cognitive science arose as a reaction against radical behav-
iourism (Bruner, 1990; Miller, 2003; Sperry, 1993). Behaviourism emphasized the 
study of the environment and of observable behaviour. In contrast, cognitivism 
argued that full accounts of psychological phenomena must appeal to mental rep-
resentations and to the processes that manipulated them. The central claim of 
classical cognitive science is that cognition is computation (Pylyshyn, 1984).

Classical cognitive science has a particular view of computation: it is the kind 
of activity performed by a physical symbol system (Newell, 1980), a device like 
a modern digital computer. As a result, the mind is assumed to hold symbolic 
expressions that can be manipulated by the formal rules of a programming lan-
guage called the language of thought (Fodor, 1975). Classical cognitive science is 
the current form of the logicist tradition (Boole, 1854/2003) that equated the laws 
of thought with the laws of formal logic. Given this view, it is far from surprising 
that a deeply formal system—music—has been extensively studied by cognitivists 
(Berkowitz, 2010; Deutsch, 1999; Howell et al., 1985; Krumhansl, 1990a; Sloboda, 
1985; Temperley, 2001).

However, not all cognitive scientists agree that thinking is the rule-governed 
manipulation of mental representations (Dawson, 2013). While classical cognitive 
science believes that cognition is formal or symbolic, connectionist cognitive scien-
tists disagree. For example, Paul Smolensky has argued that, in contrast to symbolic 
theories, artificial neural networks are subsymbolic (Smolensky, 1988; Smolensky 
& Legendre, 2006).
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To say that a network is subsymbolic is to say that its individual hidden units do 
not detect interpretable features that could be represented as individual symbols. 
Instead, hidden units detect microfeatures. Individually, a microfeature is unintelli-
gible, because its “interpretation” depends crucially upon its context (i.e., the set 
of other microfeatures that are simultaneously present [Clark, 1993]). However, a 
collection of microfeatures represented by a number of different hidden units can 
represent a concept that corresponds to a symbol in a classical model. In other 
words, the symbolic vocabulary of classical cognitive science is an approximate 
description of what emerges from finer-level mechanisms involving microfeatures, 
processor activities, and the like.

Clearly, coarse coding relates to Smolensky’s notions of subsymbolic processes 
and microfeatures. However, if our analysis reveals coarse coding, then this likely 
means that we are discovering subsymbolic features that are much more difficult 
to relate to traditional music theory. This is a problem if our goal is to use network 
structure to provide insights about the theory of music, as we have been attempting 
in Chapters 3 and 4.

This is not to say that the coarse coding revealed in Figure 5-5 is not musical. 
The coarse coding of the hidden units supports musical classifications, and there are 
interesting musical properties revealed by the hidden unit space. For instance, an 
investigation of the distances between scales in the four-dimensional space (Figures 
5-3 and 5-4) will reveal that different scales based upon the same tonic are near one 
another in this space. This is similar to the principle of placing a major key near its 
parallel minor in a Tonnetz (Schoenberg, 1969).

However, at times researchers might be tempted to emphasize the differences 
between subsymbolic musical networks and traditional music theory. That is, the 
extent to which the coarse codes of a network cannot be related to formal music 
may very well be the extent to which the network captures new regularities that 
cannot be expressed in formal theory. Importantly, the next chapter explores the 
possibility of an interesting compromise between hidden unit representations and 
formal music theory: we will explore networks that clearly exploit coarse coding, 
but these coarse codes are also related to formal music theory.

Before we move on to that material, though, let us consider a second approach 
to key-finding with neural networks. In the remainder of this chapter, we explore 
how one might create simpler neural networks that are variants of theories like the 
Krumhansl-Schmuckler key-finding algorithm (Krumhansl, 1990a). The purpose of 
these networks is to determine the keys of musical stimuli that are more complex 
than the simple scales that have been the focus, up to this point, of Chapter 5.
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5.5 Key-Finding with Perceptrons

5.5.1 Key-Finding with Tonal Hierarchies

A critical component of listening to music is identifying its musical key. Human 
listeners are able to make such judgments very rapidly (Butler, 1989). Not surpris-
ingly there is considerable interest in proposing procedures for musical key-finding, 
both to contribute to theories of music perception and to develop computer 
algorithms for automatically asserting the keys of musical stimuli (Albrecht & 
Shanahan, 2013; Frankland & Cohen, 1996; Handelman & Sigler, 2013; Holtzman, 
1977; Longuet-Higgins & Steedman, 1971; Sapp, 2005; Shmulevich & Yli-Harja, 2000; 
Temperley, 1999; Temperley & Marvin, 2008; Vos & Van Geenen, 1996). An import-
ant feature of these theories is that they are intended for general musical stimuli, 
not just for the musical scales that were presented to the multilayer perceptron 
discussed in the preceding sections of Chapter 5.

In Section 5.1.1, we noted that the tonal hierarchy is one of the major findings 
in the study of musical cognition (Krumhansl, 1979, 1990a; Krumhansl & Shep-
ard, 1979). Tonal hierarchies provide the foundation for one influential theory of 
key-finding proposed by Krumhansl and Schmuckler (Krumhansl, 1990a). The 
theory begins by recognizing that there is a different tonal hierarchy associated 
with each musical key. It uses these tonal hierarchies to create a set of key profiles, 
one for each of the 12 major and for each of the 12 minor musical keys. In the 
Krumhansl/Schmuckler key-finding algorithm, a to-be-analyzed musical stimulus 
is also represented as a key profile. This is accomplished by determining the total 
duration of each pitch-class in the stimulus. That is, one tabulates the total number 
of beats in the stimulus that involve hearing the pitch-class A, the total number 
of beats of the pitch-class A♯, and so on. Once the stimulus is represented in this 
fashion, correlations are computed between the stimulus’s profile and each of the 
24 standardized key profiles. The algorithm identifies the standardized profile that 
produces the highest correlation, and asserts that this is the key of the musical 
stimulus. Krumhansl (1990a) reports that this algorithm performs very well. It may 
also serve as a model of the cognitive processes involved when human listeners 
establish tonal centres (Frankland & Cohen, 1996; Schmuckler & Tomovski, 2005). 
For instance, Schmuckler and Tomovoski used the algorithm to predict listeners’ 
experience of tonality for preludes by both Bach and Chopin.

Although influential and successful, the Krumhansl-Schmuckler algorithm is 
not problem-free. First, its performance is not perfect. For example, when exam-
ining the performance of the algorithm on a test set of 492 selections of classical 
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compositions, Albrecht and Shanahan (2013) note that this procedure is only 74.2% 
accurate. Second, the performance of the algorithm varies depending upon whether 
it is presented stimuli in major or in minor keys. In Albrecht and Shanahan’s test 
set, the Krumhansl-Schmuckler algorithm generated 69.0% accuracy for major key 
compositions, while it was 83.2% accurate in assigning minor keys.

Some researchers have investigated variations of the Krumhansl-Schmuckler 
algorithm in an attempt to improve key-finding performance. In general, 
these variations explore two different avenues. The first involves replacing the 
Krumhansl-Schmuckler tone profiles with alternative profiles derived from large 
corpuses of music pieces (Albrecht & Shanahan, 2013; Temperley, 2004). These 
alternative tone profiles are provided in Table 5-1 along with those used in the 
Krumhansl-Schmuckler algorithm.

Table 5-1 The three sets of key profiles used in key-finding algorithms.

Scale degree of pitch-class

0 1 2 3 4 5 6 7 8 9 10 11

Krumhansl-Schmuckler

Major 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88

Minor 6.33 2.68 3.52 5.38 2.60 3.53 2.54 4.75 2.98 2.69 3.34 3.17

Temperley

Major 0.75 0.06 0.49 0.08 0.67 0.46 0.10 0.72 0.10 0.37 0.06 0.40

Minor 0.71 0.08 0.48 0.62 0.05 0.46 0.11 0.75 0.40 0.07 0.13 0.33

Albrecht-Shanahan

Major 0.24 0.01 0.11 0.01 0.14 0.09 0.02 0.21 0.01 0.08 0.01 0.08

Minor 0.22 0.01 0.10 0.12 0.02 0.10 0.01 0.21 0.06 0.02 0.06 0.05

Note. The major and minor profiles from Krumhansl (1990a), the major and minor profiles 
from Temperley (2004), and the major and minor profiles from Albrecht and Shanahan 
(2013). Scale degree 0 is assumed to be the tonic pitch, etc.

The second avenue for exploring variations of the Krumhansl-Schmuckler algorithm 
involves comparing inputs to standardized key profiles using some method other 
than correlation. Temperley (2004) uses the Bayesian probability equation, while 
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Albrecht and Shanahan (2013) assume that the standardized key profiles, and the 
to-be-classified stimulus, are all points located in 12-dimensional space; they then 
use the distance between pairs of points in this space to determine musical key.

5.5.2 A Key-Finding Perceptron

Let us now explore another variation of algorithms that use key profiles for 
key-finding. In this new approach, an artificial neural network learns to map dif-
ferent key profiles to outputs that represent musical key. Then we present the 
network a variety of different musical stimuli in order to test its ability to assert 
their musical keys.

Pilot studies reveal that a perceptron can accomplish this task (Figure 5-6). This 
perceptron uses 12 input units to represent key profiles, and uses 24 output units. 
Each of these output units represents a different musical key. Unlike the networks 
discussed up to this point, these output units are also integration devices that use 
the sigmoid-shaped logistic activation function instead of the Gaussian. I adopt 
these properties for two reasons. First, the output unit representation makes the 
behaviour of the network analogous to the behaviour of a correlation-based algo-
rithm like the Krumhansl-Schmuckler. Second, using the logistic activation function 
permits us to interpret output unit activity as a probability such as the Bayesian 
probability employed by Temperley (1999).

Figure 5-6 A perceptron that can be used to map key profiles onto musical key.

A A# B C C# D D# E F F# G G#

AM A#M BM CM C#M DM D#M EM FM F#M GM G#MA A# B C C# D D# E F F# G G#M

Output: musical key

Input: normalized tone pro�le 
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5.5.3 Perceptron Types

Three different types of key-finding perceptrons are trained. The first is trained on 
key profiles taken from the Krumhansl-Schmuckler algorithm (Krumhansl, 1990a), 
the second on key profiles taken from the Temperley (2004) algorithm, and the third 
on key profiles taken from the Albrecht and Shanahan (2013) algorithm.

Each of these three types of perceptrons represents variations of the ori-
ginal Krumhansl-Schmuckler correlational algorithm. Consider a perceptron 
trained on the Krumhansl-Schmuckler key profiles. It differs from the original 
Krumhansl-Schmuckler algorithm in two ways. First, it does not directly match 
key profiles to musical keys. Instead, it uses its connection weights to transform 
key profiles before their signals reach the output units. Second, this network does 
not use correlations to match stimuli with desired musical keys. Instead, the output 
units take the signals from (transformed) input profiles and then further transform 
them by applying the logistic equation. It is therefore possible that a perceptron 
trained on the Krumhansl-Schmuckler key profiles will respond differently to the 
same stimuli in comparison to the Krumhansl- Schmuckler algorithm itself.

5.5.4 Training Sets

One advantage that the Krumhansl-Schmuckler algorithm has via its use of cor-
relations to compare stimuli to key profiles is that this operation is not affected 
by stimulus magnitude. That is, when a long musical selection is summarized as 
a pitch-class profile, the magnitude of each value in its 12-dimensional vector is 
expected to be larger than would be observed when a shorter musical selection is 
summarized in the same way. This is simply because on average one would expect 
to find more instances of each pitch-class in a longer piece than in a shorter one. 
However, the correlation equation is not sensitive to stimulus magnitude. Instead, 
it in essence computes the similarity of two patterns by only considering their 
relative directions (when they are considered as vectors pointing in a multidimen-
sional space).

As perceptrons do not use correlations, their outputs can be affected by differ-
ences in stimulus magnitude. For this reason, I first mean-centre and then normalize 
each key profile from Table 5-1. The resulting normalized key profiles associated with 
each of these three different algorithms are provided in Table 5-2.
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Table 5-2 The three sets of mean-centred normalized key profiles used to train 
different key-finding perceptrons. These are the same profiles that were presented 
earlier in Table 5-1, but each has been processed as described in the text.

Scale degree of pitch-class

0 1 2 3 4 5 6 7 8 9 10 11

Krumhansl-Schmuckler

Major 0.655 −0.286 −0.001 −0.263 0.205 0.139 −0.220 0.390 −0.250 0.041 −0.273 −0.138

Minor 0.668 −0.234 −0.026 0.433 −0.253 −0.024 −0.268 0.278 −0.160 −0.231 −0.071 −0.113

Temperley

Major 0.442 −0.330 0.151 −0.305 0.355 0.119 −0.289 0.405 −0.280 0.014 −0.333 0.052

Minor 0.423 −0.308 0.146 0.313 −0.348 0.130 −0.283 0.463 0.064 −0.327 −0.251 −0.022

Albrecht-Shanahan

Major 0.575 −0.287 0.103 −0.287 0.199 0.040 −0.250 0.485 −0.276 −0.012 −0.280 −0.009

Minor 0.563 −0.318 0.086 0.164 −0.264 0.082 −0.293 0.538 −0.087 −0.252 −0.091 −0.128

To build a training set for a perceptron trained on the Krumhansl-Schmuckler 
profiles, the mean-centred normalized major key profile in the first row of Table 
5-2 is used to generate a key profile for each of the 12 major keys by associating the 
value given in Table 5-2 with the appropriate input unit. That is, for the key of C 
major the value of 0.655 is presented to the input unit representing the pitch-class 
C, the value of −0.286 is presented to the input unit representing the pitch-class C♯, 
and so on. Similarly, the stimulus for the key of C♯ major involves presenting the 
value of 0.655 to the input unit representing the pitch-class C♯, the value of −0.286 
to the input unit representing the pitch-class D, and so on. A similar procedure 
creates input stimuli for the 12 different minor keys using the normalized minor 
key profile in the second row of Table 5-2. As a result, the training set consists of 
24 different input patterns, one for each musical key. A second set of 24 training 
patterns is created by applying this method with the two Temperley profiles from 
Table 5-2, and a third set of 24 training patterns is created by applying this method 
using the two Albrecht-Shanahan profiles from Table 5-2.
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5.5.5 Training

Each network is a perceptron of the type illustrated in Figure 5-6, and is trained 
using the Rosenblatt software program (Dawson, 2005). Before training begins, all 
connection weights in a network are set to random values between −0.1 and 0.1. I 
initialize all the biases (θ) of the output units to zero, but I then modify them using 
the learning rule during training. I employ a learning rate of 0.50. Networks are 
trained epoch by epoch, where each of the 24 training patterns is presented once 
each epoch. The order of pattern presentation is randomized each epoch. Training 
continues until the network generates a “hit” for every output unit for each of the 
24 patterns in the training set. A hit is defined as an activity of 0.90 or higher when 
the desired output is one or as an activity of 0.10 or lower when the desired output 
is zero.

Each network is trained from a random configuration of a small initial set of 
connection weights, it is possible that different networks will achieve qualitatively 
different end states via training. For this reason, I train 10 different perceptrons on 
each of the three sets of training patterns, resulting in 30 different perceptrons. Each 
of these perceptrons is a different “subject” in a simulation experiment.

All 30 perceptrons successfully learned to map mean-centred normalized 
tone profiles onto musical keys. On average the 10 perceptrons trained on the 
Krumhansl-Schmuckler profiles converge after 1354.3 epochs of training (SD = 0.823). 
On average the 10 perceptrons trained on the Temperley profiles converge after 
1453.4 epochs of training (SD = 1.17). On average the 10 perceptrons trained on the 
Albrecht-Shanahan profiles converge after 1864.0 epochs of training (SD = 1.25).

As 10 different versions of each perceptron were trained, and as each of these 
began from a different set of small randomly selected initial weights, are there any 
qualitative differences between the solutions reached by different versions of the 
same perceptron type? Interestingly, it appears that each perceptron trained on 
the same set of profiles reaches essentially the same solution (i.e., the same set of 
connection weights, as is detailed later) and generates essentially the same responses 
to stimuli.

5.5.6 Testing

After successfully completing the training phase, a network is tested on its ability to 
assert the musical key of 296 different musical selections. These test stimuli repre-
sent four different sources. The first is the collection of 48 preludes and 48 fugues 
from both books of J.S. Bach’s Well-Tempered Clavier. These compositions are a 
typical test bed for key-finding algorithms (Albrecht & Shanahan, 2013; Temperley, 
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1999). The second is a collection of 24 preludes composed by Frederic Chopin as his 
Opus 28. One prelude was written in each musical key. These too are often used to 
test the accuracy of key-finding theories; for instance, they pose some difficulty for 
the Krumhansl-Schmuckler algorithm (Krumhansl, 1990a). The third test set is the 
24 Preludes, Opus 67, composed by Johann Hummel. As is the case for the Chopin 
preludes, Hummel composed one prelude in each musical key. The fourth test set, 
the only selection of music not from the classical genre, consists of 152 Nova Scotia 
folk songs from Songs and Ballads from Nova Scotia (Creighton, 1932).

Each of these four collections of musical selections is available in the kern file 
format at http://kern.humdrum.org/. As a result, they can be analyzed using the 
Humdrum toolkit (Huron, 1999). Humdrum’s key command is used to represent 
each of the 296 test stimuli in the format required by the Krumhansl-Schmuckler 
algorithm. That is, the total duration of each of the 12 Western pitch-classes is 
computed for each stimulus, producing a 12-entry vector representation. Each of 
these vectors is then normalized to unit length prior to being presented to a trained 
network. This normalization renders the test stimuli into a format that is identical 
to the one used to represent the training stimuli. It also ensures that the varying 
lengths of each of these test patterns do not affect network performance.

During the test phase, network performance is assessed using a procedure 
analogous to the Krumhansl-Schmuckler algorithm. That is, when a test stimulus 
is presented to a network it produces activity in 24 different output units, each one 
representing a different musical key. The output unit that generates the highest 
activity is taken to indicate the musical key being asserted by the network. The accur-
acy of this assertion is then compared to the key in which the stimulus was actually 
composed (information that is provided as part of the test stimulus’s kern file).

5.5.7 Perceptron Performance

The first row of Table 5-3 provides the average accuracy of key assertion for percep-
trons trained on the Krumhansl-Schmuckler profiles for the four different sets of 
test materials. For each set, accuracy is given as the percent correct for the entire set 
of stimuli; accuracy is then provided for only the major key stimuli and for only the 
minor key stimuli. The next two rows of Table 5-3 then provide the performance for 
perceptrons trained with the Temperley profiles and for perceptrons trained with 
the Albrecht-Shanahan profiles.

In order to have some reference point for assessing perceptron performance, 
the Krumhansl-Schmuckler algorithm is also employed. The fourth row of Table 
5-3 provides key-finding accuracy when correlations between test stimuli and the 
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normalized Krumhansl-Schmuckler profiles are used (where key is asserted by find-
ing the highest correlation).

Table 5-3 The average percent accuracy of classification of the three perceptrons trained 
on three different mean-centred and normalized key profiles.

Key- 
finding 
method

Bach Well-Tempered 
Clavier

Chopin preludes Hummel preludes Nova Scotia folk 
songs

All Major Minor All Major Minor All Major Minor All Major Minor

KSP 89.6 89.6 89.6 54.2 75.0 33.3 87.5 100.0 75.0 66.5 70.4 35.3

TP 95.8 97.9 93.8 95.8 91.7 100.0 91.7 91.7 91.7 70.4 78.5 5.9

ASP 96.9 93.8 100.0 83.3 66.7 100.0 100.0 100.0 100.0 74.3 79.3 35.3

KS Corr 93.8 87.5 100.0 87.5 83.3 91.7 100.0 100.0 100.0 67.1 71.9 29.4

Note. KSP indicates the perceptron trained on the Krumhansl-Schmuckler profiles; 
TP indicates the perceptron trained on the Temperley profiles, and ASP indicates the 
perceptron trained on the Albrecht-Shanahan profiles. The final row (KS Corr) provides 
the performance of the Krumhansl-Schmuckler correlation algorithm for purposes of 
comparison.

One observation to make from Table 5-3 is that perceptrons trained on tone profiles 
demonstrate different key-finding performance for stimuli in major or minor keys. 
In some instances, a perceptron is better on minors than on majors, while in other 
instances the reverse is true. Interestingly, the perceptron that performs best on 
minor key stimuli is the one trained on the Albrecht-Shanahan profiles; for clas-
sical genre patterns, it is 100% accurate. One of the motivations that Albrecht and 
Shanahan (2013) provided for their profiles was the goal of improving key-finding 
for minor key stimuli.

Another observation to make from Table 5-3 is that performance on classical 
genre stimuli is much better—for both perceptrons and for the correlation algo-
rithm—than it is for the Nova Scotia folk songs. This may be due to a variety of 
factors. For instance, the folk songs are generally short univocal selections, while the 
classical pieces are generally longer and include harmony. As a result, there may be 
more reliable information about key in the classical selections than in the folk songs. 
Table 5-3 indicates that particular sets of tone profiles for key-finding might have 
more success for some genres, or for at least some subsets of stimuli, than for others.
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One final observation to make concerning Table 5-3 is that when the same 
set of profiles is used, but processed differently, the same performance is not 
produced. In particular, the Krumhansl-Schmuckler perceptron generates signifi-
cantly different levels of accuracy than the Krumhansl-Schmuckler correlation 
algorithm, even though both of these methods use the same profiles. This shows 
that the perceptron is processing the profiles in a different fashion than when 
correlation is used.

The results of this study indicate that a very simple artificial neural network, the 
perceptron, is capable of mapping key profiles onto musical keys, and can then use 
this learned ability to perform respectably when given the task of asserting the keys 
of novel stimuli. In addition, it is clear that the outputs of a perceptron trained on 
key profiles are not identical to the judgments of an algorithm that asserts musical 
key using correlations with the same key profiles. This difference provides further 
support for the position that key-finding performance can be altered by changing 
the method used to compare the key profile of a stimulus with the key profiles 
associated with different musical keys. Finally, perceptron performance is clearly 
affected by which key profiles are used for training. Being trained on the normalized 
Temperley profiles leads to better performance when presented novel stimuli than 
being trained on the normalized Krumhansl-Schmuckler profiles.

5.6 Network Interpretation

5.6.1 Interpreting Perceptron Weights

The key-finding perceptrons that I have been discussing differ from the previous 
networks in the use of the logistic activation function in their output units. Earlier 
I noted that, in general, networks that use value units are easier to interpret than 
networks that use integration devices. However, when the network has no hidden 
units, a quantitative analysis of an integration device network’s structure can be 
carried out very easily. This is because a perceptron that uses integration devices 
as outputs is functionally equivalent to a system that performs logistic regression 
(Schumacher, Rossner, & Vach, 1996). This, in turn, means that a network’s weights 
can be interpreted as being natural logarithms of odds ratios, and that the size of 
each weight provides a measure of the importance of each input with respect to 
activating an output unit (Dawson & Gupta, 2017). When a perceptron uses inte-
gration devices as outputs, its connection weights literally reflect the effect size of 
each input signal—the degree to which each part of a stimulus is responsible for 
turning an input unit on or off.
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In Chapter 3, instead of viewing input units in terms of the pitch-class they repre-
sented, I considered them in terms of their degree within a scale related to an output 
unit (coding the input unit representing the scale’s tonic pitch-class as 0, coding the 
input unit representing the pitch-class a semitone higher than the tonic as 1, and so 
on). This is how I transformed Table 3-2 into Table 3-3 when interpreting the structure 
of the scale tonic perceptron. I found that, with this recoding, each output unit had 
essentially the same set of connection weights feeding into it.

This is also the case when this recoding is performed for each of the three 
key-finding perceptrons. That is, for each perceptron, each of its output units that 
represents a major key has the same set of input weights feeding into it; a different 
pattern of weights is found for each of the network’s output units that represents 
a minor key. Table 5-4 provides the connection weights that I discovered for each 
perceptron, and for each key type, when input units were considered in terms of a 
pitch’s relation to the key (with respect to degree) instead of absolute pitch-class.

Table 5-4 Weights from input units to typical output units of the three perceptrons. 

Weight between input unit (coded in terms of key degree) and output unit

0 1 2 3 4 5 6 7 8 9 10 11 θ

Krumhansl-Schmuckler

Major 6.68 −0.63 −1.63 −3.78 3.57 1.57 0.39 3.44 −1.60 −2.07 −3.45 −2.39 −7.15

Minor 6.46 0.11 0.41 4.61 −3.35 −1.69 −0.67 0.21 −2.84 −2.30 −2.22 1.28 −6.05

Temperley

Major 3.67 −0.76 1.41 −2.78 5.67 1.77 −2.57 4.52 −2.57 −3.63 −3.92 −0.77 −7.47

Minor 3.13 −1.71 1.80 3.30 −4.14 1.65 −0.50 2.76 0.60 −3.03 −5.57 1.74 −6.14

Albrecht-Shanahan

Major 7.27 0.48 −0.95 −5.04 4.84 −0.78 −1.13 4.33 −2.46 −2.44 −3.77 −0.32 −8.28

Minor 5.73 −2.20 0.46 4.08 −5.66 −0.32 −0.59 5.05 −0.70 −4.06 −2.97 1.13 −7.94

Note. Input units are coded in terms of key degree; biases are provided in the column 
labelled θ. ASP indicates the perceptron trained on the Albrecht-Shanahan profiles, 
TP indicates the perceptron trained on the Temperley profiles, and KSP indicates the 
perceptron trained on the Krumhansl-Schmuckler profiles. Unit type indicates whether 
the output unit represents a major key or a minor key.
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In all of the key-finding algorithms that use key profiles (Albrecht & Shanahan, 2013; 
Krumhansl, 1990a; Temperley, 2004), there is a direct comparison of the profile 
representing a musical stimulus to the profile of each musical key. That is, the tacit 
assumption underlying these algorithms is that the key profile itself (Table 5-1) 
provides enough information to identify key. If the different values of a key profile 
were themselves sufficient to select the correct key, then a perceptron would not 
have to weight these input values when learning to map these profiles into musical 
keys. That is, each of its connection weights would equal 1, because the perceptron 
would not have to alter its stimulus information. However, Table 5-4 reveals that 
this is clearly not the case: Table 5-4 contains connection weights ranging from over 
7 to about −6. This indicates that different components of stimulus profile have 
different degrees of importance in determining musical key.

It is important to realize that these Table 5-4 weightings of input unit signals are 
in addition to the different-sized signals that are reflected in the profiles themselves. 
For instance, the mean-centred normalized Albrecht-Shanahan major key profile 
itself indicates that the most common component in the profile is degree 0, because 
its profile value is 0.575. However, the perceptron further amplifies this value by 
multiplying it by 7.29, indicating that this high profile value is itself extremely 
informative relative to the other profile values. Similarly, in the Albrecht-Shanahan 
major profile the values of degree 1 and degree 3 both equal −0.29. However, the 
perceptron weights these two values quite differently, multiplying the degree 1 signal 
by a weight of 0.44, while multiplying the degree 3 signal by a weight of −5.04. This 
indicates that the perceptron has learned that decreased occurrence of degree 3 
pitch-classes is far more important for establishing the major key than is decreased 
occurrence of degree 1 pitch-classes. Similar observations can be made for the vari-
ous signals contributing to the identification of either major or minor keys, and 
these observations can be made for all three types of perceptron.

5.6.2 Implications

Table 5-4 indicates that when key profiles are used to train a key-finding perceptron, 
it learns that not all components of the profile are equally important. Perceptrons 
adjust their weights to modify the input signals to emphasize the information pro-
vided by important profile elements, and to de-emphasize the information provided 
by less important elements. If this were not the case, then all of the weights in Table 
5-4 would equal 1. One interesting implication of this finding is that the structure 
of a trained perceptron suggests possible variations of other key-finding algorithms 
that do not employ artificial neural networks.
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For example, the Albrecht-Shanahan algorithm positions each tone profile as 
a point in a 12-dimensional space, positions a stimulus profile in the same space, 
and assigns the stimulus the key that is represented by the point the stimu-
lus is closest to (Albrecht & Shanahan, 2013). However, this model assumes that 
each dimension in the space has the same importance. The Albrecht-Shanahan 
perceptron weights (Table 5-4) indicate that the space in which the Albrecht 
and Shanahan algorithm measures distances could be distorted, with some 
dimensions being stretched out (i.e., those associated with important profile 
components), and with others being shortened in size (i.e., those associated 
with less important profile components). The weights of the perceptron pro-
vide magnitudes for distorting the Albrecht-Shanahan space before points are 
plotted and distances are measured; it would be interesting to see what effect 
such distortions would have on the algorithm’s performance. A similar approach 
could be taken to incorporate weights into other algorithms that are based on 
tone profiles by using them to scale profile components. Of course, the weights 
in Table 5-4 would likely not be the precise ones to use, because they arise from 
networks trained on mean-centred normalized tone profiles. However, a percep-
tron trained to map musical keys to tone profiles that have not been preprocessed 
(i.e., those presented earlier in Table 5-2) could provide weights that could be 
incorporated into another algorithm. 

5.7 Summary and Implications

5.7.1 Summary

This chapter examined key-finding from two different perspectives. I began by 
exploring a multilayer perceptron for identifying the tonic and mode of scales. I 
then discovered that it developed a different kind of representation, a coarse code, 
for determining scale tonics and modes.

For the second perspective, we trained a perceptron to key-find using key pro-
files taken from established theories of key-finding. After this training, I tested 
the perceptron using a variety of different compositions after summarizing them 
in the way required by the original Krumhansl-Schmuckler algorithm. In general, 
perceptrons trained on key profiles are plausible algorithms for asserting musical 
key. Furthermore, an examination of the weights of these trained networks indi-
cates that some components of a key profile are more important than others with 
respect to performing key-finding. Let us now consider some of the implications 
of the results observed in this chapter.
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5.7.2 Coarse Coding

One of the major themes of this book is that artificial neural networks provide a 
medium for discovering new mappings between inputs and outputs. This theme 
was illustrated in our interpretations of a tonic-identifying perceptron in Chapter 3, 
and in our interpretations of a mode-identifying multilayer perceptron in Chapter 4. 
The first half of Chapter 5 demonstrated that when a multilayer perceptron learns 
to accomplish both of these tasks at the same time it discovers a new method that 
utilizes coarse coding.

The discovery of coarse coding has some interesting implications for the study 
of musical cognition. The general perspective of this field of study is that mental 
representations are used to organize and understand musical stimuli. However, 
the nature of these mental representations is an open question. One possibility is 
that geometric or spatial representations used to model musical regularities might 
also serve as accounts of mental musical representations (Krumhansl, 1990a, 2005).

Coarse coding provides an alternative representational possibility. Networks that 
employ coarse coding should exhibit particular patterns of learning (i.e., learning 
some instances faster than they learn others), should make particular patterns of 
responses to novel stimuli, and should generate definite errors when presented 
noisy stimuli. One might ask whether human listeners use coarse codes to represent 
music, and search for an answer to this question by comparing patterns of human 
responses under various conditions to related patterns observed in networks that 
are known to coarse code.

Coarse coding has less obvious, but still definite, implications for formal music 
theory. Our interpretation of Figure 5-5 focused on a formal process (intersections 
of subsets) that could use the coarse code to identify a scale’s tonic and mode. This 
formal process is carried out when an output unit’s activation function carves deci-
sion regions in a hidden unit space.

Our interpretation of each hidden unit’s response (Figure 5-5) was cursory, 
and did not explore particular musical features. I simply noted that the patterns 
of activity depicted in that figure summarize “subsymbolic” properties. However, 
such properties, though subsymbolic, are almost certainly going to be musical in 
nature. A more intensive (and likely more challenging) examination of hidden unit 
responses could identify the musical properties that cause a hidden unit to gen-
erate high responses to some stimuli but not to others. These properties would 
likely represent an alien music theory. They would also be important for informing 
representational theories of music cognition.
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5.7.3 Asserting Musical Key

One of the important results of the second half of Chapter 5 is that perceptrons 
trained on key profiles from other theories can perform quite well when identifying 
the keys of novel stimuli. These results are very encouraging, because they indicate 
that artificial neural networks demonstrate a great deal of promise as key-finding 
mechanisms.

These results are also surprising. First, the fact that simple perceptrons are 
capable of this high degree of performance is unexpected. Second, this high degree 
of performance is produced when a very sparse representation of input stimuli is 
employed. For instance, given the various modulations of key that characterize the 
pieces that make up the Well-Tempered Clavier (Bruhn, 2014; Temperley, 1999), 
it is surprising that a 12-number summary of each piece permits a perceptron to 
judge their intended key (as per Bach’s titling) at nearly 98% accuracy. If anything, 
the success of these simple networks provides converging validation about the fun-
damental importance of Krumhansl’s (1990a) tonal hierarchy.

The three different perceptrons also point to even further avenues of explora-
tion. First, the three sets of tone profiles (Albrecht & Shanahan, 2013; Krumhansl, 
1990a; Temperley, 1999) used to train the perceptrons are derived from different 
origins, are typically employed using different algorithms, and involve different mag-
nitudes of values (as can be seen by inspecting Table 5-1). Given these differences, 
it is perhaps not surprising that no one has attempted to improve key-finding by 
combining all three sets of profiles together in a single algorithm.

However, from the perspective of artificial neural networks, combining different 
profiles together is a natural next step. Indeed this notion follows naturally from 
the notion of coarse coding, if we consider coarse coding not in terms of hidden 
units but instead in terms of perceptron responses. Table 5-3 indicates that the 
responses of different types of perceptrons differ from one another on the various 
test stimuli. This suggests that each captures slightly different properties. From the 
coarse coding perspective of neural networks, this in turn suggests that key-finding 
performance could be improved in an algorithm that combines the three different 
sets of tone profiles together.

There is no reason that a single perceptron cannot be trained to key-find by 
learning about all three different types of key profiles in a single training set. Second, 
and more in the spirit of coarse coding, one could assert musical key after combin-
ing the responses of different perceptrons together. Such an architecture is called a 
committee of networks; committees of networks have been shown to be superior 
to single networks in a variety of pattern classification tasks (Buus et al., 2003; Das, 
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Reddy, & Narayanan, 2001; Guo & Luh, 2004; Marwala, 2000; Medler & Dawson, 
1994; Zhao, Huang, & Sun, 2004). It would be interesting to see how a committee of 
networks performs on the key-finding task in comparison to the perceptrons that 
have been described in this chapter.
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6

Classifying Chords with Strange Circles

6.1 Four Types of Triads

Up to this point, most of the musical networks considered have explored tonality 
in terms of components related to melody, such as the pitch-classes that make up a 
particular scale. I will now explore networks that are faced with making judgments 
involving harmony, where multiple stimulus elements combine together to define 
a musical combination like a chord. I begin by defining basic chords called triads, 
and interpret the structure of a network that learns to classify triads by their quality. 
Next, I discover a property called strange circles, in which hidden units in a network 
organize pitch-classes into musical systems called interval cycles, but then treat 
each member of an interval cycle as being the same pitch. Then, I turn to defining, 
geometrically, all of the possible interval cycles in Western music in order to have 
a catalog of strange circles available for network interpretation. Finally, I define 
another kind of chord, the added note tetrachord, and train a network to classify 
stimuli into different types of such chords. When this network is interpreted, I once 
again discover that the network uses strange circles.

6.1.1 Triads

The simulations described in Chapter 3, Chapter 4, and the first part of Chapter 
5 involved training artificial neural networks to identify properties of a particular 
type of monophonic music, the scale. In this chapter, I turn to training networks 
to detect some basic properties of harmonic music, where combinations of inputs 
are of key import. To begin, I focus on a simple chord, the triad, which is composed 
of three distinct notes. The most basic form of triad is the major triad, created by 
combining the first, third, and fifth notes of a major scale. Consider the A major 
scale that was presented in Chapter 3 as Figure 3-1. Its first note is A, its third note is 
C♯, and its fifth note is E. Therefore the A major triad, symbolized as A, is the notes 
A-C♯-E. Figure 6-1 illustrates this triad in the very first bar of the score.
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Figure 6-1 The top staff provides examples of four different types of triads built 
on the root note of A: A major (A), A minor (Am), A diminished (Adim) and A 
augmented (Aaug).

When the triad’s notes are placed on a musical staff such that the first note of the 
major scale is the lowest note, the third note is the next lowest, and the fifth note 
is the highest, the triad is said to be in root position. The A triad at the top left of 
Figure 6-1 is in root position. The major triad can be manipulated to create other 
types of triads that have different sonority. For instance, if one takes the middle 
note of a major triad and lowers it by a semitone, the result is a minor triad. The 
second bar of the Figure 6-1 score provides the A minor (Am) triad in root position; 
it is composed of the notes A-C-E. Note that an alternative way to construct a minor 
triad is to combine the first, third, and fifth notes of a minor scale. For instance, A, 
C, and E are the first, third, and fifth notes of the A harmonic minor scale presented 
earlier in Figure 3-1.

A different alteration of the major triad produces a third kind of triad, the dimin-
ished triad. A diminished triad is produced by lowering both the second and the third 
notes of a major triad by a semitone. The A diminished triad (Adim) is shown in the 
third bar of the Figure 6-1 score, and consists of the notes A-C-E♭. A third alteration 
of the major triad produces yet another triad, the augmented triad. An augmented 
triad is created by taking a major triad and raising its third note by a semitone. The 
augmented triad for A (Aaug) is illustrated in root position in the fourth bar of the 
Figure 6-1 score. The first four bars of Figure 6-1 provide four different triads built 
upon the root of A. Obviously major, minor, diminished, and augmented triads 
can be built using any of the 12 possible Western music pitch-classes as the root. 
Therefore, there are 12 different versions of each of these four different types of 
triad. Later in this chapter we will explore a multilayer perceptron that has the task 
of identifying triad type, ignoring the root or key of the triad.
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6.1.2 Inversions and Representations

Triads like those presented in the first line of Figure 6-1 can take different forms 
through a process called inversion. To create the first inversion of a triad in root 
position, one raises its lowest note an octave. To create the second inversion of a 
triad in root position, one raises both its lowest and its middle notes an octave. The 
first and second inversions of each of the triads are shown in Figure 6-1.

Inverting a triad does not alter the triad’s quality. As a result, one interest-
ing task is to train a network to identify triad quality (major, minor, diminished, 
augmented) regardless of the triad’s key and regardless of the triad’s inversion. 
However, to accomplish this task I must adopt a different input representation 
than the one used to represent scales in Chapters 3 through 5. All of these networks 
used 12 input units to represent stimuli in terms of their component pitch-classes. 
However, in order to present different inversions of the same triad I must replace 
one pitch with another pitch that is an octave higher. This distinction between 
pitches an octave apart is not possible with the pitch-class representation that 
has been used for the earlier networks, because it representation assumes octave 
equivalence.

In order to present different inversions of the same chord, I must replace the 
pitch-class representation with a local representation of musical pitch. In this local 
representation, each input unit can be considered analogous to a key on a piano that 
is associated with a particular pitch. For instance, one input unit might represent 
the pitch A3 (the A below middle C) while a different input unit represents the pitch 
A4 (the A above middle C). Both of these units represent the same pitch-class (A), 
but different pitches.

Figure 6-2 illustrates a multilayer network for triad classification that uses a 
local representation of pitch in order to present triads in different inversions. Its 
28 different input units represent 28 different musical pitches. The input units of 
this network are analogous to a 28-key piano keyboard whose lowest key plays the 
note A3 (the A below middle C), and whose highest key plays the note C6 (the C two 
octaves higher than middle C).

6.2 Triad Classification Networks

6.2.1 Task

The task for the multilayer perceptron described in this section is to identify triad 
type (major, minor, diminished, or augmented), ignoring both the triad’s key and its 
inversion.
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Figure 6-2 A multilayer perceptron with local pitch encoding that learns to 
identify four types of triads, ignoring a triad’s key and inversion.

6.2.2 Network Architecture

The multilayer perceptron illustrated in Figure 6-2 employs four output units. Each 
is a value unit. This network requires four hidden value units to converge to a 
solution to the triad classification problem. The network uses local encoding of 
specific pitches in order to present different inversions of triads as was discussed 
in Section 6.1.2. This input unit layout provides enough “room” to encode the three 
different forms of each triad. The lowest triad presented to the network is A major 
in root position. The highest triad presented to the network is G♯ augmented in 
second inversion.

6.2.3 Training Set

The training set consists of 144 stimuli: 36 different major triads, 36 different minor 
triads, 36 different diminished triads, and 36 different augmented triads. The four 
different triad types are constructed using the 12 different root pitch-classes that 
were available. In addition, each type of triad, for each root, is created in three 

Major Minor Diminished Augmented

A3 A#3 B3 C4 C#4 D4 D#4 E4 F4 F#4 G4 G#4 A4 A#4 B4 C5 C#5 D5 D#5 E5 F5 F#5 G5 G#5 A5 A#5 B5 C6
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different forms (see Figure 6-1): root position, first inversion, and second inversion. 
A particular triad (i.e., a triad related to a particular root, in a particular form) only 
appears once in the training set. For instance, there is only one A major triad in 
root position (whose lowest note is the first of the 28 input units), even though 
this same triad could be presented using other input units higher up along the 
network’s “keyboard.”

Each triad is encoded as an input pattern in which three input units are activated 
with a value of one, and the remaining 25 input units are all activated with a value of 
zero. Each input pattern is paired with an output pattern that requires one output 
unit to activate with a value of one, and the other three output units to activate 
with a value of zero. The output unit trained to activate is one that represents the 
input pattern’s correct triad type.

6.2.4 Training 

The multilayer perceptron is trained using the generalized delta rule developed for 
networks of value units (Dawson & Schopflocher, 1992) that is part of the Rumel-
hart software program (Dawson, 2005). All connection weights in the network 
are set to random values between −0.1 and 0.1 before training begins. The µs of 
the output and hidden units are all set to zero throughout training. We employ a 
learning rate of 0.005. Training proceeds until the network generates a “hit” for 
every output unit for each of the 144 patterns in the training set. Once again, a 
“hit” is defined as activity of 0.9 or higher when the desired response is one or as 
activity of 0.1 or lower when the desired response is zero. The multilayer percep-
tron typically learns to solve this problem in fewer than 1000 epochs of training. 
The example network described in more detail below converged after only 576 
sweeps of training.

6.2.5 Connection Weight Patterns

This triad classification task produces some very interesting properties when the 
connection weights of a trained network are examined. To begin, let us examine 
the connection weights from each of the 28 input units to Hidden Unit 1 of this 
multilayer perceptron, which appear in Figure 6-3. A quick glance at this figure 
reveals a striking regularity in connection weight patterns. Ignoring slight variance 
in connection weight magnitude, there is a pattern that repeats itself every three 
input units: a weak negative connection weight, followed by a strong negative con-
nection weight, followed by a strong positive connection weight.
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Figure 6-3 The connection weights from the 28 input units for pitch to Hidden 
Unit 1 in the network trained to classify triad types for different keys and 
inversions.

This repeating pattern illustrates a number of different equivalences between 
pitch-classes separated by a specific musical interval. The first is octave equivalence: 
every input unit that represents a pitch that belongs to the same pitch-class (e.g., 
the three different A pitches) is assigned the same weight. Second, pitch-classes 
separated by the interval of a minor third (three semitones) are all assigned roughly 
the same weight. For instance, B, D, F, and G♯ all belong to the interval cycle of 
minor thirds; that is, each of these pitches is a minor third away from its adjacent 
neighbours in the list. (The properties of such interval cycles [Roig-Francolí, 2008] 
are detailed later in this chapter.) Critically, they all have approximately the same 
connection weight in Figure 6-3. Similarly A, C, D♯, and F♯ belong to a different 
interval cycle of minor thirds; they too are assigned the same connection weight 
(weak negative), but one that is different from the weight assigned the first set of 
pitches. Finally A♯, C♯, E, and G all belong to yet a third interval cycle of minor 
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thirds; they are also assigned the same connection weight (strong negative), but one 
that distinguishes them from the two other groups of pitches.

Paying more attention to the subtle differences in connection weights in Figure 
6-3, one also finds evidence for tritone equivalence. For instance, A and D♯ have 
nearly identical connection weights, as do C and F♯. All pitches related by tritones 
that belong to the same “circle of tritones” are assigned the same weight. In other 
words, this set of connection weights indicates that pitches that are specific musical 
intervals apart from one another are assigned nearly identical connection weights. 
For Hidden Unit 1, this means that these different pitches are in reality all the same, 
because the connection weight from an input unit to the hidden unit in essence can 
be interpreted as Hidden Unit 1’s “name” for the input pitch.

Figure 6-4 presents the connection weights from the input units of this net-
work to a different hidden unit, Hidden Unit 2. It too reveals some striking interval 
equivalences, some of which differ from those seen in Figure 6-3. In Figure 6-4, a 
general pattern of connection weights repeats itself every four input units instead 
of every three. This pattern is a weak negative weight, then a strong positive weight, 
then a weak positive weight, and finally a strong negative weight.

Figure 6-4 The connection weights from the 28 input units for pitch to Hidden 
Unit 2 in the network trained to classify triad types for different keys and 
inversions.
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Once again, this pattern exhibits octave equivalence: each pitch that belongs to 
the same pitch-class has the same weight. Ignoring subtle variations in magnitude, 
the pattern of weights in Figure 6-4 separates the different pitches into four differ-
ent groups, each containing three pitch-classes. For example A, C♯, and F are the 
only pitches that have weak negative weights. Analogous groupings via connection 
weights are found for the pitch-classes A♯, D, and F♯, for the pitch-classes B, D♯, 
and G, and for the pitch-classes C, E, and G♯.

The weights in Figure 6-4 do not exhibit tritone equivalence but do demonstrate 
tritone balance: note that pitch-classes separated by a tritone (like A and D♯) have 
weights that are equal in magnitude but opposite in sign.

Figure 6-5 presents the connection weights between the input units and Hidden 
Unit 3. Its organization is very similar to that of Hidden Unit 2 (Figure 6-5). It exhibits 
octave equivalence, organizes pitches into the four different groups related by major 
thirds, and demonstrates tritone balance. The key difference between Figure 6-5 and 
Figure 6-5 is that while both exhibit the same organizational pattern, there appears 
to be a phase shift of this pattern when we compare the two hidden units. That is, 
the weak negative weight that starts the pattern is associated with A in Figure 6-4 
but has been shifted three semitones to the right to start with C in Figure 6-5.

Figure 6-5 The connection weights from the 28 input units for pitch to Hidden 
Unit 3 in the network trained to classify triad types for different keys and 
inversions.
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The final pattern of connectivity to consider involves Hidden Unit 4 (Figure 
6-6). This pattern demonstrates octave equivalence, with the exception of the final 
weight for C, which is a dramatic outlier. (This particular note is included in only 
one chord; occasionally I find that networks can solve problems by treating rarely 
used input units uniquely.) Paying attention only to the sign of connection weight 
(and ignoring the deviant final weight!), it is notable that connection weight sign 
alternates from positive to negative every semitone. This divides the pitches into 
groups that belong to different interval cycles of major seconds. One of these cycles 
contains A, B, C♯, D♯, F, and G; the other cycle contains A♯, C, D, E, F♯, and G♯. 
This pattern of connection weights also demonstrates tritone equivalence; pitches 
separated by a tritone have roughly the same weight.

Figure 6-6 The connection weights from the 28 input units for pitch to Hidden 
Unit 4 in the network trained to classify triad types for different keys and 
inversions.

The pattern of connection weights that feeds into each of this multilayer per-
ceptron’s hidden units clearly indicates that pitches and pitch-classes are often 
organized into distinct equivalence classes that involve musical intervals. We will 
see below that this is a common discovery in networks of value units trained to 
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make judgments about chords. Network interpretation can often be implified by 
seeking these sorts of relationships out, but they are even more interesting because 
they point to a very different kind of formal music theory.

To get a better understanding of these relationships and their implications, let 
us first detail the properties of various interval cycles. I will then consider a second 
multilayer perceptron trained on a different chord classification task, and discover 
interesting equivalence classes between pitches and pitch-classes when we examine 
its hidden unit weights.

6.3 Interval Cycles and Strange Circles

Section 6.2 described a multilayer perceptron for classifying triad types. The con-
nection weights feeding into its hidden units grouped different sets of pitches and 
pitch-classes into various equivalence classes. I call such equivalence classes strange 
circles. They are circles, in the sense that they involve sets of pitch-classes that 
belong to musical sets called interval cycles, each of which can be represented as a 
circle of pitch-classes. They are strange, although, as far as networks are concerned, 
pitch-classes that belong to the same interval cycle are all treated as being the iden-
tical note. In other words, when I find networks that employ strange circles in their 
internal representations, these networks are using fewer than the 12 pitch-classes 
that are the core components of Western music theory.

I now explore such relationships in more detail, because they appear fre-
quently when I train artificial neural networks on tasks involving musical harmony 
(Yaremchuk & Dawson, 2005, 2008). I begin by using the notion of interval cycles 
from music theory (Roig-Francolí, 2008) to generate the possible interval equiva-
lences that might be discovered inside a network. I will generate a catalogue of the 
various interval cycles that can be defined for Western music, and then point out 
that each of these cycles could be used as a strange circle. Later in this chapter, and 
in chapters that follow, we will see several examples of networks whose internal 
structure reveals such strange circles.

6.3.1 Piano Geography

Our general approach to defining strange circles is to generate geometric rep-
resentations of interval cycles. The foundation of our geometric representation of 
pitch-class relationships is a physical artifact, the piano keyboard. Each piano key, 
when struck, produces a unique pitch. For instance, the lowest (left-most) shaded 
note at the top of Figure 6-7 corresponds to the pitch “middle C,” which is some-
times designated with the name C4.
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Figure 6-7 The geography of the piano.

The layout of piano keys is quite regular. This is evident in Figure 6-7 from the 
arrangement of black keys, which alternate in groups of twos and threes across 
the figure. The pattern of 12 differently named piano keys at the top of Figure 6-7 
repeats itself along the keyboard.

While every piano key plays a differently pitched note, that note belongs to 
one of the 12 pitch-classes of Western music that we have already encountered. 
Therefore, several different piano keys play different pitches that all belong to the 
same pitch-class, and they occur at regular intervals along the piano keyboard. This 
is illustrated at the bottom of Figure 6-7, which highlights the locations of four 
different instances of the pitch-class C. Nearest neighbours on the keyboard that 
belong to the same pitch-class are separated by a span of 12 adjacent piano keys. 
This distance is equivalent to 12 semitones, or a musical interval of a perfect octave.

6.3.2 Distance and Intervals

With respect to our piano geography, what is the distance between two notes? For 
instance, what is the distance between the highlighted notes C and E at the top of 
Figure 6-8? We can measure this distance in terms of the number of piano keys that 
separate the two notes.

Examine the top illustration in Figure 6-8. If one starts at the highlighted C 
and moves up in pitch (i.e., to the right along the keyboard), then the first key 
encountered is C♯, the second is D, the third is D♯, and the fourth is E. Therefore, 
the distance between C and E is four piano keys. Alternatively, we can say that the 
distance between C and E in this figure is four semitones, which is a musical interval 
of a major third.
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Figure 6-8 Using the number of piano keys as a measure of the distance between 
pitches.

We can identify sets of pitches that are spaced the same distance apart by continuing 
to count the same number of keys to the next note, as illustrated in the middle part 
of Figure 6-8. The distance up from C to E is four piano keys; if we move the same 
distance up from E, we reach G♯. If we move up four piano keys from G♯, we reach 
another C. In other words, if we start at C, and always move four piano keys up, we 
will only encounter three different pitch-classes: C, E, and G♯.

It is convenient to arrange a set of pitch-classes picked out by moving a fixed 
distance along the piano in a circle. The circle that results when a distance of four 
piano keys is used starts with C, moves next to E, moves next to G♯, and then returns 
to C. It is the fact that after a few moves we return to the pitch-class that we started 
from (C in this example) that motivates arranging this set of pitch-classes in a circle. 
We literally come full circle back to the pitch-class from which we started. Such 
circles of intervals are called interval cycles (Roig-Francolí, 2008).

If we use the same distance between notes but start at a different piano key, we 
can define a different instance of the same interval cycle. For instance, if we start 
at C♯ and move up four keys at a time, our circle will only include the pitch-classes 
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C♯, F, and A. With a between-note distance of four piano keys, we can define four 
different circles of three pitch-classes.

Interestingly, we can encounter the same subset of pitch-classes by starting at 
C and counting a different distance. The bottom part of Figure 6-8 shows that G♯ 
is eight piano keys higher than C, and that E is eight piano keys higher than G♯. 
With this different distance, we encounter the same pitch-classes highlighted in the 
middle of Figure 6-8, but encounter them in a different order. That the same subset of 
pitch-classes are encountered when one moves different distances along the keyboard 
indicates that we can consider these pitch-classes as being separated by two different 
musical intervals (Roig-Francolí, 2008). For instance, C and E can be considered to be 
a major third apart (four piano keys) or a minor sixth apart (eight piano keys).

Clearly, there is a musical interpretation for each distance between pitches meas-
ured in terms of number of piano keys or in terms of semitones. Table 6-1 presents 
the names of the different intervals in Western music, as well as their associated 
distance between pitches. Note that this table indicates that there are only 13 differ-
ent types of interval cycles to be concerned about, because there are only 13 different 
semitone distances listed in the table, ranging from 0 semitones to 12 semitones. 
The next sections consider the properties of these possible interval cycles.

Table 6-1 The 13 possible distances between pitches that can be used to create interval 
cycles.

Distance between pitches 
in semitones

Interval name

0 Perfect unison

1 Minor second

2 Major second

3 Minor third

4 Major third

5 Perfect fourth

6 Tritone

7 Perfect fifth

8 Minor sixth

9 Major sixth
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Distance between pitches 
in semitones

Interval name

10 Minor seventh

11 Major seventh

12 Perfect octave

6.3.3 Single Interval Cycles

The first set of interval cycles to discuss are those distances between pitches which, 
when used, combine all 12 different pitch-classes into a single set or a single interval 
cycle. To begin, let us consider starting on a piano keyboard at a note named C, and 
moving up from this note (i.e., to the right along the keyboard) a distance of one 
piano key. The first note that we will encounter is C♯. Moving the same distance up 
from C♯ we will next encounter D. Continuing to move along the keyboard in this 
fashion, we will encounter every possible pitch-class before we finally reach another 
note named C. The set of pitch-classes that we encounter, and the order in which 
we encounter them, can be represented in a single circle (Figure 6-9). (To make this 
figure easier to compare to other versions, instead of drawing the circle, we arrange 
the pitch-classes in a circle, and then draw a radius to the centre of the circle to place 
each pitch-class on a “spoke.”) Because the distance between adjacent notes in this 
circle is one piano key (one semitone), the interval between adjacent notes is a minor 
second. Therefore, we can name Figure 6-9 the circle of minor seconds. Note that 
moving in a clockwise direction around this circle is equivalent to moving up (i.e., 
to the right) along a piano keyboard, and moving in a counter-clockwise direction 
is equivalent to moving down along a piano keyboard.

Figure 6-9 The circle of minor seconds.
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Earlier we noted that by choosing a different distance to move along the piano key-
board we will encounter the same set of pitch-classes, but will do so in a different 
order. This is the case if we start at a note named C and move up the keyboard a 
distance of 11 keys (or 11 semitones), which corresponds to a musical interval of a 
major seventh. The order of notes that are encountered is illustrated in Figure 6-10 
as a circle of major sevenths.

Figure 6-10 The circle of major sevenths.

An inspection of the circle of major sevenths indicates that it picks out the same 
pitch-classes as does the circle of minor seconds, but it does so in a different order. 
Indeed, the two circles are complementary: the circle of major sevenths is a mirror 
reflection of the circle of minor seconds.

We have seen that distances of one or 11 piano keys pick out all 12 pitch-classes; 
they can be arranged around a single circle to represent the order in which 
pitch-classes are encountered. Another distance that picks out all 12 pitch-classes 
is one of five piano keys (or semitones). Moving up a piano keyboard at this distance 
produces the circle of perfect fourths, illustrated in Figure 6-11. Note that this circle 
arranges pitch-classes in a very different order than we saw in Figures 6-9 and 6-10.

As was the case with the circle of minor seconds, the circle of perfect fourths has 
a complementary circle that is its reflection. The circle of perfect fifths is produced 
when one starts at C and moves up a piano keyboard a distance of seven piano keys 
or seven semitones (Figure 6-12). Note that if one were to move counter-clockwise 
around the circle of perfect fourths, one would encounter pitch-classes in the same 
order as moving clockwise around the circle of perfect fifths. This is because when 
a musical interval of a perfect fourth is inverted, the result is a musical interval of 
a perfect fifth.
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Figure 6-11 The circle of perfect fourths.

Of the four interval cycles presented in this section, the one most frequently seen 
in music is the circle of perfect fifths. Music students learn how to use this circle 
to determine the number of sharps or flats are in a particular musical key. Later we 
will see how this circle serves as a map to guide a musician who wishes to play the 
chords of a particular jazz progression, the ii-V-I. The circle of minor seconds is also 
commonly encountered; for instance, it is frequently found in geometric discussions 
of musical regularities (Tymoczko, 2011).

Each of the interval cycles presented in this section is defined musically: each 
is created by moving upward along a piano keyboard in steps of a set distance. 
However, these cycles—as well as those presented in following sections—can also 
be considered as mathematical objects called manifolds.

Figure 6-12 The circle of perfect fifths.

A manifold is a surface upon which objects are represented as points. Manifolds 
have specific shapes, and exist in a space that has a set number of dimensions. For 
instance, all of the manifolds described in this section are circular shapes. They 
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are one-dimensional manifolds, in the sense that you can trace the entire shape 
with a finger without having to lift the finger up before the trace is completed. 
These manifolds are embedded in a higher-dimensional space. For instance, each 
of these manifolds is depicted in a two-dimensional space, the plane of the page in 
which each figure is drawn. In short, each of the circles that we have discussed is a 
one-dimensional manifold, circular in shape, embedded in a two-dimensional space.

The shape of a manifold is important, because it constrains how one moves from 
location to location along the manifold’s surface. That is, to move from one location 
to another, one must never leave the manifold’s surface. This property of manifolds 
has been used in theories of visual perception and visual imagery (Farrell & Shepard, 
1981; Shepard, 1984) to model the appearance of three-dimensional objects as they 
move or as they are mentally rotated.

In describing the single interval cycles as manifolds, I am asserting that their 
shape and layout place certain constraints on how one can move from one note (i.e., 
from one point on the manifold’s surface) to another. For instance, on the circle 
of perfect fifths, to move from C to D one must necessarily pass through an inter-
mediate location, G. This is because G occupies an intermediate location between 
C and D on the manifold’s surface.

Interpreting each of the circles as a manifold has further implications concerning 
the notion of distances between notes (Tymoczko, 2011). Each manifold is derived 
by moving along a piano keyboard at a set distance. However, after creating a mani-
fold, I could measure the distance between notes along the manifold’s surface. For 
instance, in the circle of perfect fifths, G is one unit of distance away from C because 
it is next to C on the manifold; similarly, D is two units away from C on the same 
manifold.

From this perspective, the distance between notes depends upon a particular 
context: the specific manifold under consideration. In the circle of perfect fifths, G is 
one distance unit away from C. In the circle of minor seconds, the shortest distance 
between C and G is five distance units. The idea that the distance between notes 
can be measured along a manifold, and that the size of this distance depends on 
the particular manifold being considered, is strongly related to Dmitri Tymoczko’s 
idea of measuring distance between notes in the context of different musical scales 
(Tymoczko, 2011).

Importantly, if one uses a musical manifold or a musical scale as the context in 
which to measure the distance between pitch-classes, then one is tacitly assuming 
that different points on the manifold represent different pitch-classes. Of particular 
interest to us in this chapter is that in some instances artificial neural networks 
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capture pitch-classes that can be represented in a manifold, but do not treat these 
pitch-classes as being different. For these networks, the manifold is an equivalence 
class, because all the pitch-classes that belong to it are the same. However, in order 
for equivalence classes of this sort to be useful there must be more than one, so 
that some pitch-classes belong to one equivalence class but not others. In the next 
section, we consider circles of musical intervals that pick out different and comple-
mentary subsets of pitch-classes.

6.3.4 Pairs of Interval Cycles

In the previous section, I detailed four different musical manifolds that are interval 
cycles. They are single in the sense that one manifold captures all 12 pitch-classes on 
its surface. Next, I will describe some new manifolds, each of which only captures 
half of the available pitch-classes. As a result, two different versions of the same 
process—moving along the piano keys—are required to build two complementary 
manifolds which, when combined, capture all 12 pitch-classes.

Consider starting at a C note on a piano, and moving upward a distance of 
two keys to the next note, which will be D. Following this procedure, we will 
next encounter E, F♯, G♯, and A♯ before encountering another C. One can build 
a manifold of these notes —a circle of major seconds—but it will only hold six of 
the 12 available pitch-classes. If one repeats this process, but start on C♯ instead 
of C, we will create a second circle of major seconds that complements the first 
because it captures the remaining six pitch-classes. Figure 6-13 illustrates these 
two circles of major seconds.

Figure 6-13 The two circles of major seconds.
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If one takes a major second interval and inverts it, then the result is a minor seventh. 
This is because after inverting the major second interval, the distance between the 
low D and the higher C would be 10 semitones. From this, one should expect to be 
able to produce two circles of minor sevenths that complement the circles of major 
seconds illustrated in Figure 6-13. Indeed, if one gains at C and moves upward along 
the piano keyboard 10 keys at a time a circle of minor sevenths that is a reflection 
of the first circle of major seconds in Figure 6-13 is produced. Starting instead at 
C♯, one produces a manifold that complements the first circle of minor sevenths 
and reflects the second circle of major seconds in Figure 6-13. Figure 6-14 provides 
these two circles of minor sevenths.

Figure 6-14 The two circles of minor sevenths.

6.3.5 Trios of Interval Cycles

In this section, I define sets of three complementary manifolds, each of which cap-
tures four pitch-classes; all three combined contain all 12 pitch-classes. Imagine 
starting on the piano at some C note and moving upward along the keyboard a 
distance of three keys. The first note encountered is D♯. Moving the same distance 
upward, one encounters F♯, then A, and then another C. Thus, this defines a circle 
that captures four of the 12 pitch-classes. This manifold is a circle of minor thirds, 
because if two adjacent notes are three semitones apart, they are separated by an 
interval of a minor third.

To define other, complementary, manifolds I must move the same distance along 
the keyboard but from different starting points. If we start at C♯ instead of C, a 
second circle of minor thirds is defined; if we start at D instead of C, a third circle 
of minor thirds is defined. Figure 6-15 illustrates the three possible circles of minor 
thirds.
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Figure 6-15 The three circles of minor thirds.

If one takes a minor third and inverts it, then one produces an interval of a major 
sixth whose notes are nine semitones apart. Not surprisingly, if I start at each of 
the three notes used above (C, C♯, D) and move along the piano nine keys at a time, 
I produce three different complementary circles of major sixths, shown in Figure 
6-16. Each of these circles is a reflection of one of the circles of minor thirds illus-
trated in Figure 6-15.

Figure 6-16 The three circles of major sixths.
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defines a circle that captures only three of the 12 pitch-classes. This manifold is a 
circle of major thirds.

Three other circles of major thirds are possible, and are required to capture the 
remaining pitch-classes. I create them by moving the same distance along the piano 
keyboard, but from different starting points: C♯, D, and D♯ respectively. Figure 6-17 
illustrates the four circles of major thirds.

Figure 6-17 The four circles of major thirds.

If one takes a major third and inverts it, one produces an interval of a minor 
sixth whose notes are separated by eight semitones. If one starts at each of the four 
starting points used to create the manifolds of Figure 6-17 (C, C♯, D, D♯) and moves 
along the piano eight keys at a time, then one produces the four complementary 
circles of minor sixths, each of which is illustrated in Figure 6-18. Each of these 
circles is a reflection of one of the circles illustrated in Figure 6-17.

Figure 6-18 The four circles of minor sixths.
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6.3.7 Sextets of Interval Cycles

If one starts at some C note on the piano keyboard and moves up six piano keys, 
one encounters F♯. Moving up another six piano keys one reaches another C. This 
defines a simple manifold that contains only two points. To capture the remaining 
pitch-classes requires starting from five additional notes on the keyboards. This 
produces the six different circles of tritones that Figure 6-19 provides.

Figure 6-19 The six circles of tritones.

The inversion of a tritone is itself a tritone, because this interval is defined by six 
semitones, a distance that is exactly half an octave. Thus, no other interval cycles 
are reflections of those illustrated in Figure 6-19.

6.3.8 Dodecal Interval Cycles

Choose some note C on a piano, and move 12 keys—a perfect octave—upward. You 
reach another C. This produces a special case manifold, a “circle” that represents a 
single pitch-class as a single point. Obviously 11 other such manifolds are required 
to capture the remaining pitch-classes (Figure 6-20).

Figure 6-20 The 12 circles of octaves, or circles of unison.

If one inverts an octave interval by raising the lower note an octave, the result is 
two identical notes—the distance between them is zero semitones. This musical 
interval, perfect unison, produces exactly the same set of 12 manifolds given in 
Figure 6-20.

D Gs

C Fs

E As

Ds A

Cs G

F B

E

C

A

G

As

Ds

Cs

F

B

Gs

D

Fs



doi: 10.15215/aupress/9781771992206.01

Classifying Chords with Strange Circles 141

6.3.9 Strange Circles

We introduced single interval cycles in Section 6.3.3 (e.g., the circle of minor seconds 
and the circle of perfect fifths). Then we discussed a number of interval cycles in 
which more than one cycle existed for the same interval. These were the two circles 
of major seconds, the two circles of minor sevenths, the three circles of minor thirds, 
the three circles of major sixths, the four circles of major thirds, the four circles of 
minor sixths, the six circles of tritones, the 12 circles of perfect octaves and the 12 
circles of unison.

As was the case for the single circles of intervals, each of these multiple circles is 
a manifold. For instance, on one of the circles of major seconds the distance between 
C and D is one unit. However, we can interpret each of these manifolds in a different 
way: as an equivalence class. For instance, let us return for a moment to consider the 
hidden units of the multilayer perceptron that learned to classify triads (Section 6.2). 
Hidden Unit 1 (Figure 6-3) organizes inputs in terms of circles of minor thirds: all the 
pitches that belong to the same circle have the identical weight from the input unit 
to this hidden unit. However, this also means that all of the different (to us) mem-
bers of this circle are identical for this hidden unit. Similarly, Hidden Unit 2 (Figure 
6-4) assigns the same connection weights to inputs that belong to the same circle 
of major thirds; Hidden Unit 3 (Figure 6-5) also organizes inputs into equivalence 
classes based on circles of major thirds. Hidden Unit 4 (Figure 6-6) organizes inputs 
into equivalence classes based on circles of major seconds (if one only examines 
connection weight signs) and into equivalence classes based on circles of tritones 
(if one examines both the magnitude and sign of each connection weight).

I call equivalence classes based upon circles of intervals strange circles. These 
circles are strange in two ways.

First, while entities like the two circles of major seconds or the three circles of 
minor thirds are proper components of music theory, they are rarely encountered 
in theories of tonal music—music associated with a tonal centre. Instead, they are 
more likely to be encountered in theories about atonal or post-tonal music (Laitz, 
2008; Roig-Francolí, 2008; Straus, 2005). This is because these interval cycles are 
all examples of symmetric sets of pitch-classes. That is, one can draw at least one 
axis through images such as those illustrated in Figures 6-13, 6-15, 6-17, and 6-19 
such that the arrangement of the pitch-classes on one side of the axis mirrors the 
arrangement of those on the other side.

Symmetric sets of pitch-classes are important elements in post-tonal music. 
This is because “the basis of tonality’s gravitational field, which pulls scale degrees 
and harmonies toward tonic, is predicated on asymmetry” (Laitz, 2008, p. 812). For 
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instance, key elements of tonal music, like the major and harmonic minor scales 
that we have encountered earlier, depend upon the asymmetric arrangement of 
pitch-classes that result when one creates a scale in which neighbouring notes are 
spaced apart by an irregular arrangement of tones and semitones (see Chapter 2). 
If this asymmetry is eliminated by choosing sets of pitch-classes that are equally 
spaced (as in the strange circles), then “a sense of goal-directed motion and tonal 
grounding disappears because every scale step is as stable (or as unstable) as every 
other step” (Laitz, 2008, p. 813).

In short, when one trains a network to make a musical judgment about tonal 
musical stimuli, and discovers that it does so by employing symmetric interval 
cycles, then this is indeed strange.

A second reason for calling these circles strange is that when one finds them in 
networks, they typically involve assigning different input units (i.e., pitch-classes) 
identical connection weights that feed into the same hidden unit. This means 
that as far as this hidden unit is concerned, these different (to us) pitch-classes 
are identical. In other words, a hidden unit that assigns one connection weight to 
the pitch-classes that belong to one circle of major seconds, and assigns another 
connection weight to all of the pitch-classes that belong to the other circle of 
major seconds, is operating as if music is constructed from only two pitch-classes 
instead of 12.

On the one hand, the use of equivalence classes to represent musical regularities 
is not odd. For instance, we have already encountered the notion of octave equiva-
lence that motivated our discussion of pitch-class representations in Chapter 2. We 
saw in Chapter 3 that scales constructed on different tonics could be assigned to 
equivalence classes based on scale mode (e.g., major vs. harmonic minor). Clearly, 
the use of equivalence classes is central to music theory.

On the other hand, the foundation of almost all theory concerning Western 
music assumes the existence of 12 different pitch-classes. For instance, when the 
principle of octave equivalence is invoked in the theory of atonal or post-tonal music 
(Forte, 1973; Roig-Francolí, 2008; Straus, 2005), this implies the assumption of 12 
different pitch-classes. Music theory has not explored the consequences of using 
interval cycles to define equivalence classes that imply fewer than 12 pitch-classes.

Let us now turn to another network whose interpretation reveals that it treats 
a number of different pitch-classes as being the same, because they have the same 
connection weight. Whenever this occurs, one finds that the equivalence class that 
they belong to is one of the strange circles described above.
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6.4 Added Note Tetrachords

6.4.1 Tetrachords

The major and minor scales that serve as the foundation for much of Western music 
are rooted in musical formalisms invented by the ancient Greeks. The foundation of 
Greek music was not the scale but the tetrachord. The Greek tetrachord was a set of 
four different notes, the lowest always separated from the highest by an interval of 
a perfect fourth. Two additional notes were placed between these two, carving the 
tetrachord’s perfect fourth into three smaller intervals. There were three main types 
of tetrachords, depending upon the choice of the inner two notes (Barbera, 1977; 
Chalmers, 1992). Our modern major and harmonic minor scales are constructed 
from two adjacent Greek tetrachords.

Figure 6-21 Added note tetrachords in the key of C major.

The modern definition of tetrachord includes a much wider variety of chords than 
does the Greek definition. A modern tetrachord is any chord that includes four 
different pitches. Figure 6-21 illustrates the construction of a subset of modern 
tetrachords. The top line of this score provides the notes of the C major scale. In 
the middle line, each of these notes serves as the root of a triad. The added notes 
are always two scale notes higher than the lower note, so triads are constructed by 
skipping over notes. For instance, the C major triad is C-E-G, which skips over D 
and F. Similarly, the D minor triad is D-F-A (skipping over E and G), and so on. This 
process produces three different major triads (C, F, and G), three different minor 
triads (Dm, Em, and Am), and one diminished triad (Bdim).
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The last line in Figure 6-21 converts each triad into a tetrachord by adding 
another note from the C major scale. Again, the added note is two scale notes higher 
than the highest note in the triad. For instance, the Cmaj7 tetrachord is C-E-G-B 
(skipping over the A to add the B). Similarly, the Dmin7 tetrachord is D-F-A-C, and 
so on. Each of these tetrachords is a seventh chord. There are different types of 
these tetrachords created from this process: two major seventh chords (Cmaj7 and 
Fmaj7), three minor seventh chords (Dm7, Em7, and Am7), one dominant seventh 
chord (G7), and one minor seventh flat fifth chord (Bm7♭5).

The same approach to chord construction can be applied to any major scale, 
producing a set of seven different chords for each key. However, if I create these 
seven different chords for each of the 12 major keys, then I will not create 84 unique 
chords. This is because when a pitch-class representation is used the same chord 
will appear in different musical keys. For example, in the set of 84 chords, each min7 
chord will appear three different times, and each maj7 chord will appear twice. As a 
result, our total set of 84 chords will include 48 unique tetrachords and 36 duplicates 
of some of these chords.

6.4.2 Tetrachord Properties

In order to illustrate networks that solve musical problems by assigning notes 
to equivalence classes based upon circles of intervals, we will consider a multi-
layer perceptron that is presented modern tetrachords of the type illustrated in 
Figure 6-21, and which learns to assign one to each of four different tetrachord 
classes. Prior to describing this network, let us consider the musical properties 
of these chords.

Earlier in this chapter, I noted that each different type of triad possesses a par-
ticular pattern of musical intervals between adjacent notes. The same is true for the 
different tetrachords. For instance, consider the Cmaj7 tetrachord in root position, 
whose notes (in order) are C, E, G, and B. There is an interval of a major third from 
C to E, of a minor third from E to G, and of a major third from G to B. This pattern 
of intervals distinguishes this type of tetrachord from the other three types, as can 
be seen from the third column of Table 6-2 below.

Of course, if one considers the distances between nonadjacent notes in a tetra-
chord, then there are more intervals than those presented in the third column 
of Table 6-2. In order to obtain a deeper understanding of the structure of these 
tetrachords we can use musical set theory (Forte, 1973) to determine each tetra-
chord’s Forte number, prime form, and interval-class vector (ic vector). The final 
three columns of Table 6-2 provide the results of this analysis.
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Table 6-2 Musical properties of each type of tetrachord in Figure 6-21.

Chord type Example Intervals between adjacent notes Forte 
number

Prime 
form

IC  
vector

Major 7 [C, E, G, B] major third - minor third - major third 4-20(12) 0,1,5,8, 101220

Minor 7 [D, F, A, C] minor third - major third - minor third 4-26(12) 0,3,5,8, 012120

Dominant 7 [G, B, D, F] major third - minor third - minor third 4-27 0,2,5,8, 012111

Minor 7flat5 [B, D, F, A] minor third - minor third - major third 4-27 0,2,5,8, 012111 

Note. The first column provides the chord type, and the second column provides an 
example of the chord. The third column provides the structure of the chord in terms 
of the musical intervals between adjacent pitches. The final three columns provide 
descriptors of the chord type taken from Forte’s (1973) set theory, including Forte’s 
classification number for each chord type, the prime form of the chord, and the IC vector 
that provides the interval structure of the chord.

Two particularly interesting findings emerge from this set-theoretic analysis. First, 
both the dominant seventh and the minor seventh flat fifth tetrachords have the 
same prime form and the same ic vector. This means that a network may only be 
able to differentiate these two tetrachords by considering the specific order in which 
the component musical intervals occur. Second, the ic vectors for each tetrachord 
type provide some indication of the musical regularities that a network may be able 
to exploit to differentiate tetrachord types, as detailed below.

In an ic vector, the first number indicates how many minor second/major 
seventh intervals occur in a musical object. The second number indicates the fre-
quency of major second/minor seventh intervals. The third number indicates the 
frequency of minor third/major sixth intervals. The fourth number indicates the 
frequency of major third/minor sixth intervals. The fifth number indicates the 
frequency of perfect fourth/perfect fifth intervals. The sixth number indicates the 
frequency of tritones.

With this understanding of ic vectors, we can now see what the ic vectors in the 
final column of Table 6-2 reveal. For instance, a major seventh tetrachord is the only 
one that has a minor second or major seventh interval, and the only one that does not 
have a major second or a minor seventh interval in its structure. Neither the major 
nor the minor seventh tetrachords contain a tritone, but the other two types of chords 
do. The minor seventh tetrachord shares individual ic vector values with each of the 
other types of tetrachords; this means that it can only be distinguished from them 
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by considering several interval types at the same time. For instance, it can be distin-
guished from the major seventh by the presence of a major second or minor seventh 
interval, but the other two types of tetrachords share this property. A minor seventh 
can only be distinguished from them by detecting the absence of a tritone interval.

Now let us turn to describing the training of a multilayer perceptron to detect 
these four different types of tetrachords, regardless of the musical key in which 
they occur.

6.5 Classifying Tetrachords

Figure 6-22 A multilayer perceptron that classifies tetrachords into four different 
types.

6.5.1 Task

Our goal is to train an artificial neural network, when presented with four notes 
that define a tetrachord constructed from the notes of a major scale (Figure 6-21), 
to identify the type of tetrachord (major seventh, minor seventh, dominant seventh, 
or minor seventh flat fifth), ignoring the key of the tetrachord.

At the end of training, this multilayer perceptron turns one output unit “on” to 
identify tetrachord type, and turns the remaining three output units “off,” when 

A A# B C C# D D# E F F# G G#

maj7 m7 dom7 m7�at5
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presented a tetrachord. Thus, this network has four different output units, each one 
dedicated to representing a particular tetrachord type.

6.5.2 Network Architecture

Figure 6-22 presents the architecture that accomplishes this tetrachord classification 
task. It uses four output value units to represent tetrachord type, and requires three 
hidden value units to converge to a solution to this problem. It uses 12 input units 
to represent input tetrachords in the same pitch-class representation used for the 
training of the networks in several previous chapters. Figure 6-22 illustrates the 
presentation of the C major seventh tetrachord (grey input units), resulting in the 
“Major Seventh” output unit activating.

6.5.3 Training Set

The training set consists of 84 stimuli: the seven different tetrachords for a major 
scale (see Figure 6-21); these tetrachords are constructed for each of the 12 dif-
ferent major scales. Within this set of 84 stimuli there are 36 duplicate patterns 
(each maj7 tetrachord appears twice, and each min7 tetrachord appears three 
times). For the current network, this simply means that these two different types 
of tetrachords receive more training than the other two types. This difference 
is not relevant to the point that the network illustrates: the presence of strange 
circles in the connection weights of its hidden units. I encode each tetrachord as 
an input pattern in which four input units are activated with a value of one, and 
the remaining eight input units are all activated with a value of zero. Each input 
pattern is paired with an output pattern that requires one output unit to activate 
with a value of one, and the other three output units to activate with a value 
of zero. The output unit trained to activate is the one that represents the input 
pattern’s correct tetrachord type.

6.5.4 Training

The multilayer perceptron is trained with the generalized delta rule developed for 
networks of value units (Dawson & Schopflocher, 1992) using the Rumelhart soft-
ware program (Dawson, 2005). During a single epoch of training each pattern is 
presented to the network once; the order of pattern presentation is randomized 
before each epoch.

All connection weights in the network are set to random values between −0.1 
and 0.1 before training begins. In the network to be described in detail below, each 
µ is initialized to zero but is then modified by training. A learning rate of 0.01 is 
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employed. Training proceeds until the network generates a “hit” for every output 
unit for each of the 84 patterns in the training set. Again, I define a “hit” as activity 
of 0.9 or higher when the desired response is one or as activity of 0.1 or lower when 
the desired response is zero.

I explored a number of different network architectures with this training set. 
When networks have four or five hidden value units, the problem is very easy and is 
often solved in a few hundred epochs. However, in order to get a three-hidden-unit 
network to converge, each µ was modified during training. On some occasions, a 
three-hidden-unit network would converge very quickly. For instance, the network 
described in more detail in the next section converged after 11,566 epochs of training. 
However, on many occasions a three-hidden-unit network would settle to a local 
minimum and fail to converge to a solution even after more than 20,000 epochs of 
training. In other words, the network analyzed in the next section required a fair 
amount of patience during training!

Importantly, all of the networks trained on this problem developed patterns of 
connectivity that reflect equivalence classes defined by interval cycles. I simply focus 
on the smallest of these networks because with only three hidden units it is easier 
to consider some of its properties, such as its hidden unit space.

6.6 Interpreting the Tetrachord Network

6.6.1 Hidden Unit Space

How does this multilayer perceptron identify the four different types of tetra-
chords? Let us first consider the hidden unit space for this network, illustrated 
in Figure 6-23. This space is very sparse because the different instances of tetra-
chord types are very near one another in the space. Indeed, in many cases different 
tetrachords occupy the same coordinates in this space, which is why it appears to 
have so few symbols illustrated, even when there are 84 different input patterns 
plotted in this figure.

We saw such overlapping of points in an earlier hidden unit space, the one 
illustrated in Figure 4-2. It is important to realize that this feature of the hidden 
unit space is one of the key properties made explicit by this visualization of the 
hidden unit space. While the overlapping of symbols in Figure 6-23 seems to make 
the graph harder to inspect, it delivers a fundamental characteristic: as far as this 
network is concerned, chords that are of the same type, but which belong to dif-
ferent keys, are identical. This is why the different chords occupy the same location 
in the hidden unit space.
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Figure 6-23 The hidden unit space for a multilayer perceptron trained to identify 
the four types of tetrachords.

In this space, all of the major seventh tetrachords are at two general locations 
at the cube’s upper left. All of the minor seventh tetrachords fall along the front 
right edge of the Figure 6-23 cube. All of the dominant seventh tetrachords fall in 
two regions in the lower left-hand corner of the cube. All of the minor seventh flat 
fifth tetrachords fall either in a single tight area located in the upper back region 
of the cube or in a similar location in the lower left-hand corner at the front of the 
cube. Importantly, all of these locations of tetrachord types in the hidden unit space 
can easily be separated from the other tetrachords by two parallel planes that are 
carved through the space by each output value unit. Let us consider the tetrachord 
properties detected by each hidden unit.

The fact that all of the different types of tetrachords are near one another, 
typically in two different areas of the hidden unit space, suggests that each type of 
tetrachord produces a small number of different patterns of activity in the hidden 
units. We can confirm this by taking each type of tetrachord and examining the 
hidden unit activities produced by each. Three of the tetrachord types produced 
two distinct patterns of hidden unit activity, while the fourth (the minor sev-
enths) produced three distinct patterns of hidden unit activity. Table 6-3 presents 
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the activity in each hidden unit, averaged over all of the hidden units that fall 
together in a particular type. Each row of hidden unit activities represents the 
general coordinates of tetrachord locations in Figure 6-23, and confirms our visual 
inspection of that figure.

Table 6-3 indicates that each subtype of a tetrachord shares some similarities in 
terms of some hidden unit activities, but they differ from each other in terms of the 
other activities that they produce. For instance, consider the three different subtypes 
of the minor seventh tetrachords. Each of these subtypes is similar in producing 
very high activity in Hidden Unit 1, and in producing very low activity in Hidden 
Unit 2. The three differ in terms of the activity that each produces in Hidden Unit 
3: one produces very high activity in this unit, another produces near zero activity, 
and the third produces weak activity.

Table 6-3 The different patterns of hidden unit activity produced by different subsets of 
each type of tetrachord.

Chord type Pattern # of tetrachords H1 H2 H3

Major 7 1 16 0.00 0.00 0.63

2 8 0.00 0.48 0.95

Minor 7 1 12 0.96 0.04 0.95

2 12 1.00 0.00 0.09

3 12 1.00 0.01 0.27

Dominant 7 1 8 0.00 0.00 0.29

2 4 0.32 0.00 0.02

Minor 7flat5 1 8 0.00 0.01 0.05

2 4 0.32 0.95 0.94

Note. Each subset is given a number and the number of tetrachords that belong to that 
subset is indicated in the column labelled #. The H1, H2, and H3 columns provide the 
average activity produced in each hidden unit by a tetrachord that belongs to the subset.

In order to understand these different patterns of activity, and why particular tetra-
chords produce specific activities in specific hidden units, let us describe the pattern 
of connectivity between the 12 pitch-class input units and the three hidden units. 
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Once we have a sense of the regularities in these connection weights, we can use 
this knowledge to explain the regularities of Figure 6-23 and Table 6-3. In the sec-
tions that follow, we will consider hidden units from the most easily interpreted 
(musically) to the least; as a result, the order in which units are discussed will not 
agree with the names of the hidden units.

6.6.2 Hidden Unit 1

To begin, let us examine the pattern of connections between the 12 input units 
and Hidden Unit 1 (Figure 6-24). This figure provides a strong indication that this 
hidden unit classifies input pitch-classes in terms of the circles of tritones. That is, 
Figure 6-24 exhibits tritone equivalence: pitch-classes that are a tritone apart have 
essentially the same connection weight.

Figure 6-24 The connection weights from the 12 input units to Hidden Unit 1.

Tritone equivalence in this hidden unit is important because at the end of training 
its µ had a value of 0.00. We might expect that the presence of a pair of pitch-classes 
that are a tritone apart would produce an extreme net input, turning Hidden Unit 
1 off. The ic vectors in Table 6-2 might lead us to predict that Hidden Unit 1 would 
therefore turn on to either major seventh or to minor seventh tetrachords (which 
do not include a tritone). However, the data in Table 6-3 does not support this 
prediction. Major seventh tetrachords never activate Hidden Unit 1. There must 
be something more sophisticated within the Hidden Unit 1 connection weights.
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In networks described in earlier chapters, we observed a phenomenon called tri-
tone balance. In tritone balance, pitch-classes a tritone apart had connection weights 
that were equal in magnitude but opposite in sign. As a result, if both pitch-classes 
were present they would cancel each other out. An examination of Figure 6-24 reveals 
that these connection weights are balanced, but not in terms of tritones. Instead, this 
hidden unit balances minor thirds. Pitch-classes that are a minor third apart have 
connection weights that are equal in magnitude but opposite in sign.

This relationship is explicit in Figure 6-25, which plots exactly the same connec-
tion weights from Figure 6-24 but stacks the weights from pitch-classes separated 
by a minor third on top of one another. The symmetry of this bar graph provides 
the evidence that these connection weights balance minor thirds.

Figure 6-25 The connection weights of Figure 6-24 re-plotted so that weights 
from pitch-classes a minor third apart are stacked on top of one another.

Our earlier discussion of circles of minor thirds indicated that, unlike two 
pitch-classes separated by a tritone, one pitch-class is a minor third away from two 
other pitch-classes. For example, an examination of the first circle of minor thirds 
in Figure 6-15 indicates that C is not only a minor third away from A but is also a 
minor third away from D♯. If Hidden Unit 1 is truly balancing minor thirds, then 
we expect to find that one pitch-class is balanced with two others, and not just one.

This appears to be the case for Hidden Unit 1. Figure 6-26 presents yet another 
depiction of its connection weights from Figure 6-24. However, in this second 
figure each connection weight is stacked against the other pitch-class that is a 
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minor third away (i.e., the pitch-class that it was not stacked against in Figure 
6-25). Once again, this figure is very symmetrical, although the balancing is not 
as perfect as that shown in Figure 6-25. Together, Figures 6-25 and 6-26 reveal 
that Hidden Unit 1 balances a pitch-class with either of the pitch-classes that are 
a minor third away from it.

Our investigation of Hidden Unit 1 connection weights has revealed that they 
assign pitch-classes a tritone apart to the same equivalence class, and they balance 
minor thirds. Major seventh tetrachords do not include a tritone, but do include 
pitches that are a minor third apart (Table 6-2). Why, then, do these tetrachords fail 
to activate Hidden Unit 1? The answer to this question comes from the pitch-class 
representation used for the multilayer perceptron. This representation rearranges 
the structure of the various tetrachords, and the hidden units must process this 
rearranged structure.

Figure 6-26 The connection weights of Figure 6-24 re-plotted so that weights 
from pitch-classes a minor third apart are stacked on top of one another. Note the 
difference in stacking between this figure and Figure 6-25.

Table 6-4 presents the pitch-class representation of two major seventh tetrachords 
in its first two rows; one is an example of Pattern 1 from Table 6-3 and the other 
is an example of Pattern 2. The key property to observe in both is that after being 
represented in this format, each contains two pitch-classes that are a minor second 
apart (A and A♯ in A♯maj7, D and D♯ in D♯maj7). This property is true of every major 
seventh tetrachord in the training set.
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The presence of adjacent pitch-classes in any major seventh input pattern causes 
Hidden Unit 1 to turn off. This is because any four connection weights that include 
adjacent pitch-classes do not balance to produce a net input near zero to activate this 
unit. Instead, major seventh tetrachords that belong to Pattern 1 from Table 6-3 will 
include two balanced weights (e.g., D and F for A♯maj7), one near-zero weight (e.g., 
A♯ for A♯maj7), and one extreme weight that is out of balance with the other three 
(e.g., A for A♯maj7). Major seventh tetrachords that belong to Pattern 2 from Table 
6-3 combine four weights that are even more unbalanced, causing more extreme 
net input (e.g., the D♯maj7 chord in Table 6-4).

Table 6-4 Example pitch-class representations of two major seventh tetrachords and 
three minor seventh tetrachords, along with the net input they provide to Hidden Unit 1 
(Net) and its resulting activity.

Chord A A# B C C# D D# E F F# G G# Net H1 Activity

A#maj7 1 1 0 0 0 1 0 0 1 0 0 0 1.44 0.00

D#maj7 0 1 0 0 0 1 1 0 0 0 1 0 3.28 0.00

F#min7 1 0 0 0 1 0 0 1 0 1 0 0 0.12 0.95

Dmin7 1 0 0 1 0 1 0 0 1 0 0 0 0.00 1.00

Gmin7 0 1 0 0 0 1 0 0 1 0 1 0 0.00 1.00

Minor seventh tetrachords do not include adjacent pitch-classes in their pitch-class 
representation for the network, and as a result always include four connection 
weights that when combined produce near-zero net input to turn Hidden Unit 1 on. 
Table 6-4 also provides three example pitch-class representations of minor seventh 
tetrachords (one for each pattern in Table 6-3).

Each of the three minor seventh tetrachords presented in Table 6-4 contains 
two pairs of pitch-classes that are a minor third apart and have balanced weights; 
we can see all of these balanced pairs in Figures 6-25 and 6-26. For F♯min7 they are 
[A, F♯] and [C♯, E]. For Dmin7 they are [A, C] and [D, F]. For Gmin7 they are [A♯, 
G] and [D, F]. The balancing of each of these pairs of connection weights produces 
very small net inputs, and high Hidden Unit 1 activities, as presented in Table 6-4. 
Every other minor seventh tetrachord in the training set also exhibits this property. 
In other words, for minor seventh tetrachords Hidden Unit 1 behaves as expected 
from our interpretation of connection weights!
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Let us now briefly turn to explaining the activity produced in Hidden Unit 1 by 
the two other types of tetrachords, the dominant seventh and the minor seventh 
flat fifth. Table 6-3 reveals that the majority of both types of these chords produce 
zero activity in Hidden Unit 1. This is consistent with our analysis of this unit’s 
weights. Earlier, I noted that these weights exhibit tritone equivalence. There-
fore, pitch-classes a tritone apart cannot cancel each other’s signal out, because 
both pitch-classes are associated with the same connection weight. Indeed, in the 
pitch-class representation of each of the dominant seventh and the minor seventh 
flat fifth chords that turns this unit off, one finds two pitch-classes a tritone apart. 
Their combined weights produce an extreme net input that is very far from µ.

What is surprising about Table 6-3 is that a minority of both of these types of 
tetrachords produce weak activity in Hidden Unit 1. How is this possible if these 
stimuli include a tritone?

Table 6-5 presents the pitch-class representation of four example tetrachords 
that produce this surprising behaviour in Hidden Unit 1. All four of these chords 
include a pair of tones a tritone apart: [A, D♯] in B7, [C, F♯] in G♯7, [D, G♯] in Dmin-
7flat5, and [B, F] in Bmin7flat5. However, other intervals, when present, moderate 
the effect of the unbalanced tritone. For example, B7 includes the pitch-classes [A, 
F♯]; these provide a balanced minor third (Figure 6-26). The same is true for the 
pitch-classes [C, D♯] in C♯7, [F, G♯] for Dmin7flat5, and [D, B] in Bmin7flat5. The 
remaining two connection weights together produce less extreme net input (see 
Table 6-5) that produces moderate Hidden Unit 1 activity. In other words, for this 
subset of tetrachords, Hidden Unit 1 compromises its activity because it detects 
one interval that should turn it off (a tritone), but another that should turn it on 
(a minor third).

Table 6-5 Example pitch-class representations of two dominant seventh tetrachords and 
two minor seventh flat five tetrachords, along with the net input they provide to Hidden 
Unit 1 (Net) and its resulting activity.

Chord A A# B C C# D D# E F F# G G# Net H1 Activity

B7 1 0 1 0 0 0 1 0 0 1 0 0 −0.61 0.32

G#7 0 0 0 1 0 0 1 0 0 1 0 1 0.60 0.32

Dmin7flat5 0 0 0 1 0 1 0 0 1 0 0 1 0.60 0.32

Bmin7flat5 1 0 1 0 0 1 0 0 1 0 0 0 −0.61 0.32
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6.6.3 Hidden Unit 3

Let us next consider the connection weights of Hidden Unit 3 (Figure 6-27). As was 
the case with Hidden Unit 1, Hidden Unit 3 assigns input pitch-classes to equiva-
lence classes related to circles of intervals. For Hidden Unit 3 these equivalence 
classes involve the three circles of minor thirds.

All four pitch-classes that belong to the first of these circles in Figure 6-15 are 
assigned the same negative weight (−0.43) in Figure 6-27. All that belong to the 
second circle of Figure 6-15 have the same weak positive weight (0.07) in Figure 6-27. 
Finally, all of the pitch-classes that belong to the third circle in Figure 6-15 have the 
same stronger positive weight (0.33) in Figure 6-27.

Figure 6-27 The weights of the connections from the input units to Hidden Unit 3.

Unlike Hidden Unit 1, Hidden Unit 3 does not exhibit any obvious balancing 
between pairs of weights a particular musical interval apart. However, the weights 
that it assigns to the three different equivalence classes reveal some very interest-
ing properties. If one considers combinations of four different weights, then one 
discovers specific patterns that cancel net input signals and cause high activity in 
Hidden Unit 3.

First, it is important to recognize that the value of µ for Hidden Unit 3 is −0.08. 
This means that for an input pattern to generate a maximum response in this hidden 
unit, the net input generated by this pattern will be slightly negative.

An examination of different combinations of four weights from Figure 6-27 
reveals that there are three different patterns that accomplish this (Figure 6-28). 
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Figure 6-28 arranges the four different bars representing connection weights in such 
a way that the balance between negative and positive weights is apparent.

The first combination occurs when a tetrachord contains only one member from 
the equivalence class assigned a negative weight, only one member from the equiva-
lence class assigned a strong positive weight, and two members from the equivalence 
class assigned a weak positive weight. This pattern is represented as a stack of four 
bars on the left of Figure 6-28. When I sum these four weight values, the resulting 
net input is approximately −0.04, which generates activity of approximately 0.95 in 
Hidden Unit 3. This pattern appears in four different major seventh chords: Emaj7 
[B, D♯, E, G♯], C♯maj7 [C, C♯, F, G♯], Gmaj7 [B, D, F♯, G], and A♯maj7 [A, A♯, D, F]. 
No other tetrachords, including the other major seventh chords, exhibit this pattern.

Figure 6-28 Three different combinations of four Hidden Unit 3 weights that 
produce net inputs close enough to µ to generate high activity.

Interestingly, the other major seventh chords produce moderate activity in this 
hidden unit (0.63 as shown in Table 6-3). They exhibit a slightly less optimal com-
bination of four weights than the three shown in Figure 6-28. This involves one 
weak positive weight, one negative weight, and two stronger positive weights or 
one weak positive weight, one stronger positive weight, and two negative weights. 
Any of these combinations produces a net input that ranges between −0.47 and 0.30 
depending upon which particular weights are included.

The second combination of four Hidden Unit 3 weights that produces high 
activity involves two pitch-classes that have strong negative weights and two 
pitch-classes that have strong positive weights. This pattern is illustrated with the 
group of four bars in the middle of Figure 6-28. This pattern only appears in four 
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different minor seventh tetrachords: F♯min7 [A, C♯, E, F♯], Cmin7 [A♯, C, D♯, G], 
Amin7 [A, C, E, G], and D♯min7 [A♯, C♯, D♯, F♯].

The third combination of four Hidden Unit 3 weights that produces high activity 
involves one pitch-class that has a strong negative weight and three pitch-classes 
that have weak positive weights. This pattern is illustrated with the stack of four bars 
at the right of Figure 6-28. This pattern only appears in four different minor seventh 
flat fifth tetrachords: G♯min7♭5 [B, D, F♯, G♯], D min7♭5 [C, D, F, G♯], Fmin7♭5 [B, 
D♯, F, G♯], and Bmin7♭5 [A, B, D, F].

One type of tetrachord that does not produce high activity in Hidden Unit 3 
is the dominant seventh. The highest activity is produced by an input pattern like 
A♯7: [A♯, D, F, G♯]. Note that this pattern includes three weak positive weights (D, 
F, G♯), but the fourth weight is a stronger positive weight (A♯). Because most of 
these weights are weak, this type of input pattern produces a relatively small net 
input (0.54). However, this net input is extreme enough to reduce Hidden Unit 3 
activity to about 0.29. This pattern is true of eight of the 12 different dominant sev-
enth chords. The other four dominant seventh chords include three of the extreme 
negative weights balanced by only a single weak positive, producing a net input of 
−1.23 and essentially turning Hidden Unit 3 off.

Finally, while some minor seventh and some minor seventh flat fifth tetrachords 
cause Hidden Unit 3 to activate, most do not. All of these tetrachords include a pair 
of pitch-classes that are a minor third apart. As Hidden Unit 3 exploits minor third 
equivalence, these pitch-classes do not cancel their signals out. Instead, they pro-
duce more extreme net input for Hidden Unit 3, reducing its activity. Importantly, 
the combined effect of a pair of such pitch-classes is not uniform: [A♯, C♯] has a 
greater effect than does [B, D] because the former pair has more extreme connection 
weights than the latter pair (see Figure 6-27). This explains why some tetrachords 
that include at least one minor third can still produce mild activity in Hidden Unit 
3 (e.g., 0.27 produced by some minor seventh input patterns).

6.6.4 Hidden Unit 2

Let us finally consider Hidden Unit 2 (Figure 6-29). Although these connection 
weights have a very regular appearance, they are less musically general than the 
weights for both Hidden Units 1 and 3. This is because Hidden Unit 2 fulfills a very 
specialized task for the tetrachord classification network.

Why might one say that the pattern of weights in Figure 6-29 is less musically 
general than those we have seen earlier in this chapter? One reason is that the 
weights in Figure 6-29 do not exhibit any systematic assignment of pitch-classes to 
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equivalence classes. For instance, Figure 6-29 begins by suggesting tritone equiva-
lence because the weight for A is nearly identical to the weight for D♯. However, 
the weights for the next tritone (A♯, E) are not equivalent, nor do they balance. No 
other systematic equivalences based upon circles of intervals are apparent in this 
figure either.

Figure 6-29 The connection weights from the 12 input units to Hidden Unit 2.

We saw earlier that both Hidden Units 1 and 3 organized pitch-classes using 
interval-based equivalence classes, but also balanced other combinations of 
pitch-classes related by different intervals. Hidden Unit 2 balances several differ-
ent pairs of pitch-classes as well. Figure 6-30 illustrates this by presenting the same 
weights that are in Figure 6-29, but stacking balanced weights on top of each other 
to highlight their symmetry.

Once again, though, the balancing in Figure 6-30 is not musically systematic. For 
instance, the balanced pair [A, C♯] is a major third apart, as is the balanced pair [C, 
E]. However, the balanced pair [A♯, F♯] is a minor sixth apart, while the balanced 
pair [B, F] is a tritone apart. In short, the connection weights for Hidden Unit 2 
seem to balance specific pairs of pitch-classes, and do not balance specific types of 
musical intervals.

Why does Hidden Unit 2 exhibit properties that are less musically general than 
those exhibited by the other two hidden units? An answer to this question comes 
from considering the role of Hidden Unit 2 in arranging input patterns in the hidden 
unit space.
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Figure 6-30 The connection weights from the 12 input units to Hidden Unit 2, 
with balanced weights stacked on top of each other.

To begin, let us consider the hidden unit space in the context of output unit 
functions. Figure 6-31 attempts to make this context explicit. On its left is a copy 
of the hidden unit space presented earlier in Figure 6-23. On its right is the same 
space, but with an additional four planes. These four planes illustrate that in 
this three-dimensional hidden unit space all of the input patterns that belong 
to a particular tetrachord type align along a two-dimensional plane that passes 
through the space.

The planes drawn on the left part of Figure 6-31 are important in terms of how 
output units function for this particular network. Recall that each output unit is 
a value unit. This type of unit carves a three-dimensional hidden unit space into 
decision regions by placing two parallel planes that cut through this space. Any 
input patterns that fall between these two planes are patterns that turn the output 
unit on. These planes are very close together, because a value unit is sensitive to 
a very narrow range of net inputs. The single planes illustrated in Figure 6-31 are 
important, because they will fall between the two parallel cuts that an output value 
unit carves through this hidden unit space. This permits the output unit to respond 
correctly to these patterns by turning on, and by correctly turning off to any other 
patterns that do not fall between the two cuts.

What is Hidden Unit 2’s role in arranging patterns in this space? To answer 
this question, one can redraw the three-dimensional hidden unit space in Figure 
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6-31 as a two-dimensional hidden unit space. This two-dimensional space arranges 
input patterns using Hidden unit 1 and 3 activities as coordinates. In other words, 
this hidden unit space would exist if Hidden Unit 2 was absent from the multilayer 
perceptron (Figure 6-32).

Figure 6-31 The input patterns in their position in the hidden unit space are 
illustrated on the left.
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Figure 6-32 A two-dimensional hidden unit space for the input patterns created 
by removing the Hidden Unit 2 coordinate from Figure 6-31.

When an output value unit confronts a two-dimensional hidden unit space, it does 
not carve it with parallel planes. Instead, it carves two parallel lines through this 
space; patterns that fall between the two lines turn the output unit on. The lines 
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are very close together, because an output value unit is sensitive to a very narrow 
range of net inputs. The hidden unit space on the left side of Figure 6-32 illustrates 
the parallel cuts that can be made through this space by three of the output units. 
Each of these three pairs of cuts separates one type of tetrachord from all three of 
the other types, permitting the output unit to classify the chords. The three cuts 
illustrated on the left of Figure 6-32 demonstrate that this two-dimensional space 
arranges input patterns that would permit the network to correctly classify all of 
the minor seventh, dominant seventh, and minor seventh flat fifth tetrachords.

When an output value unit confronts a two-dimensional hidden unit space, it 
does not carve it with parallel planes. Instead, it carves two parallel lines through 
this space; patterns that fall between the two lines turn the output unit on. The 
lines are very close together, because an output value unit is sensitive to a very 
narrow range of net inputs. The hidden unit space on the left side of Figure 
6-32 illustrates the parallel cuts that can be made through this space by three of 
the output units. Each of these three pairs of cuts separates one type of tetra-
chord from all three of the other types, permitting the output unit to classify the 
chords. The three cuts illustrated on the left of Figure 6-32 demonstrate that this 
two-dimensional space arranges input patterns that would permit the network to 
correctly classify all of the minor seventh, dominant seventh, and minor seventh 
flat fifth tetrachords.

The problem with this two-dimensional hidden unit space, though, is that it 
does not permit the major seventh tetrachords to be identified. This is illustrated 
on the right side of Figure 6-32. This graph is the same hidden unit space as the 
one on the left. In this version of the space, two parallel lines are added to capture 
the major seventh tetrachords (the triangles). Note that this is the only orientation 
of these two parallel lines that results in all of the triangles falling between them. 
However, this positioning of the two lines does not separate the major seventh 
tetrachords from all of the other types: notice that dominant seventh and minor 
seventh flat fifth chords also fall between these two lines. This suggests that the 
functional role of Hidden Unit 2 in the multilayer perceptron is to arrange the 
major seventh tetrachords in a pattern to separate them from the other chords 
that they cannot be separated from when Hidden Unit 2 is absent. Looking back 
at Figure 6-31, this seems to be exactly what the Hidden Unit 2 dimension is 
adding to the hidden unit space. That dimension appears to capture a handful 
of major seventh tetrachords and pull them toward the back of the cube. This 
permits these chords to be arranged along a plane, and permits an output unit 
to define a decision region that only captures these patterns. The other effect of 
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Hidden Unit 2 is that it also draws a handful of minor seventh flat fifth tetra-
chords to the back of the cube. This suggests that these input patterns possess 
some musical property that is being used by the hidden unit to pull the major 
seventh tetrachords to the back.

We can confirm this functional account of Hidden Unit 2’s role in the network by 
examining the subset of input patterns that produce higher Hidden Unit 2 activity 
in the context of the connection weights provided earlier in Figures 6-29 and 6-30. 
First, Hidden Unit 2 generates moderate to high activity to only eight different 
tetrachords. This confirms our observation that Hidden Unit 2 only moves a small 
number of input patterns to permit their correct detection. Second, four of the tetra-
chords that produce moderate activity in Hidden Unit 2 are major seventh chords 
whose properties are provided below in Table 6-6. This observation is important 
because we noted above that the key function of Hidden Unit 2 is to enable this 
type of chord to be classified; major seventh chords are the only chords that cannot 
be correctly separated in the two-dimensional pattern space.

Table 6-6 The four major seventh tetrachords and then the four minor seventh flat five 
tetrachords that produce moderate activity in Hidden Unit 2.

Chord Notes Weights Net H2 Similar

A#maj7 A A# D F 0.92 2.69 −0.39 −3.77 −0.55 0.49 Bm7flat5

Gmaj7 B D F# G 3.03 −0.39 −2.19 −0.05 0.40 0.49 G#m7flat5

C#maj7 C C# F G# 4.36 −0.75 −3.77 −0.40 −0.55 0.48 Dm7flat5

Emaj7 B D# E G# 3.03 0.95 −4.15 −0.40 −0.56 0.47 Fm7flat5

Bm7flat5 A B D F 0.92 3.03 −0.39 −3.77 −0.18 0.96 A#maj7

G#m7flat5 B D F# G# 3.03 −0.39 −2.19 −0.40 −0.19 0.96 Gmaj7

Dm7flat5 C D F G# 4.36 −0.39 −3.77 −0.40 0.06 0.95 C#maj7

Fm7flat5 B D# F G# 3.03 0.95 −3.77 −0.40 −0.20 0.95 Emaj7

Note. The grey cells indicate the one difference between the notes of each of these major 
seventh tetrachords and the minor seventh flat five tetrachord to which it is similar. The 
“Net” column provides the net input produced for Hidden Unit 2, and the “H2” column 
provides Hidden Unit 2 activity.
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Third, the four tetrachords that produce high activity in Hidden Unit 2 are all minor 
seventh flat fifth chords that are nearly identical to the four major seventh chords 
that produce moderate activity in this same unit. They are nearly identical in several 
respects. They share three pitch-classes with one of the major seventh tetrachords. 
Their remaining pitch-class is only a minor second away from the fourth pitch-class. 
Finally, the connection weight associated with the fourth pitch-class has a simi-
lar value to the connection weight associated with the fourth (i.e., the dissimilar) 
pitch-class in the major seventh chord. Table 6-6 provides the properties of the four 
minor seventh flat fifth tetrachords. The grey cells in Tables 6-6 indicate the single 
difference, in either a pitch-class or a connection weight, between a major seventh 
tetrachord and its similar minor seventh flat fifth tetrachord.

The high specificity of the connection weights presented in Figures 6-29 and 
6-30 now make perfect sense in light of the properties detailed in the two tables 
above. First, these connection weights capture very specific relationships (and not 
general musical properties) because all Hidden Unit 2 really has to do is move four 
major seventh tetrachords away from the others in the three-dimensional hidden 
unit space. If this unit detects properties that are more general, then this would 
affect the position of a larger number of tetrachords. Second, the specific balancing 
observed in Figure 6-30 nicely accomplishes the main task of Hidden Unit 2. The 
A♯maj7 chord produces moderate activity in this unit because the weights from A 
and from D roughly balance one another, as do the weights from A♯ and F. A similar 
rough balancing of pairs of pitch-classes is true for Emaj7. The remaining two major 
seventh chords balance one extreme positive weight (C for C♯maj7, B for Gmaj7) 
with a combination of three negative weights. Third, the four minor seventh flat 
fifth tetrachords that produce high activity in Hidden Unit 2 do so because they 
are each nearly identical to one of the major seventh chords that this unit moves. 
They differ in only one pitch-class, and this difference is only a semitone. This in 
turn means that one structural property of the weights in Figure 6-29 is that pairs 
of pitch-classes a minor second apart ([A♯, B], [C♯, D], [E, F] and [G, G♯]) must have 
similar weight values. An inspection of this figure indicates that this property is 
indeed apparent.

6.7 Summary and Implications

This chapter began by describing a multilayer perceptron for classifying triads 
regardless of their key or inversion. This network revealed interesting patterns of 
connection weights between its input and hidden units. In particular, its connec-
tion weights organize pitches and pitch-classes into different subsets. For instance, 
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Hidden Unit 1 assigns weights so that [A, C, D♯, F♯] define one subset, and similarly 
uses its weights to organize [A♯, C♯, E, G], [B, D, F, G♯], and [C, D♯, F♯, A] as three 
other subsets. That is, pitch-classes that belong to the same subset have a very 
similar weight, but pitch-classes that belong to different subsets have very differ-
ent weights. We see similar sorts of organizations, involving different subsets of 
pitch-classes, in the other hidden units as well.

The chapter then proceeded to describe the various interval cycles created by 
moving set distances from pitch to pitch along a piano keyboard. These interval 
cycles are a standard element of post-tonal music theory (Roig-Francolí, 2008). 
I noted that they also provide a convenient formalism for the subsets of pitches 
and pitch-classes picked out by connection weights. This in turn led to the notion 
of strange circles. A strange circle is a set of pitch-classes that belong to the same 
interval cycle. The circle is strange because each member of the same strange circle 
has the same connection weight. This means that a strange circle is an equivalence 
class of pitch-classes. It captures a set of pitch-classes that are distinct in Western 
music, but identical from the perspective of a hidden unit in a network.

The chapter ended by providing a detailed interpretation of the internal 
structure of a multilayer perceptron that learned to classify tetrachords into four 
different types. This network provided another example of using strange circles. 
Both Hidden Units 1 and 3 of this network organize pitch-classes into equivalence 
classes based upon interval cycles. Hidden Unit 1 assigns the same weight values to 
two pitch-classes that belong to the same circle of tritones. Hidden Unit 3 assigns 
the same weight values to three pitch-classes that belong to the same circle of 
minor thirds. Furthermore, the particular weight values that both Hidden Units 
1 and 3 assign to each equivalence class are very systematic. Their values permit 
pitch-classes separated by other musical intervals to balance, increasing hidden 
unit activation.

Taken together, these two above observations indicate that Hidden Units 1 
and 3 detect general musical properties that permit varied and useful responses 
to pitch-class combinations that are either part of, or not part of, specific tetra-
chord structures. Indeed, Figure 6-32 indicates that these two hidden units alone 
are capable of supporting the correct identification of all of the members of three 
of the four types of tetrachords. The network’s remaining hidden unit, Hidden 
Unit 2, detects very specific properties (i.e., properties related to a small number of 
individual chords, and not to a larger set or chord types) that serve to arrange the 
major seventh chords in hidden unit space in such a way that they can be correctly 
identified. The specific properties detected by this hidden unit also capture four 
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different minor seventh flat fifth chords. There is a strong musical relationship 
between these chords and the major seventh chords segregated by Hidden Unit 2.

To relate this interpretation to material covered in Chapter 4, these three hidden 
units provide another example of coarse coding. None of the hidden units detects 
a specific property that is consistent with only one type of tetrachord: two or more 
different types of tetrachords can produce high activity in any of the hidden units. 
However, when we consider the activities produced by an input pattern in the 
hidden units simultaneously, we can identify the input pattern’s type.

The connection weights for the two more general hidden units (Hidden Units 1 
and 3) of the network interpreted in Section 6.6 have one interesting implication to 
keep in mind for later network interpretations: both of these hidden units use their 
weights to organize pitch-classes by more than one musical interval. The reason that 
this is possible is because some of the interval cycles introduced in Section 6.3 relate 
hierarchically to others. For example, each of the circles of major seconds contains 
the pitch-classes that belong to two of the circles of major thirds. Similarly, each of 
the three circles of major thirds contains the notes that belong to two of the circles 
of tritones. These hierarchical relationships permit one set of connection weights to 
organize input pitch-classes in complex ways. For example, one hidden unit could 
use the sign of the connection weight to separate pitch-classes into the two circles of 
major seconds. However, variations in magnitudes of these same weights can simul-
taneously be used to organize the pitch-classes into circles of tritones because of a 
hierarchical relationship between the two. In Chapter 7, I explore a more complex 
network trained on an elaboration of the tetrachord task, and discover that many 
of its hidden units exploit the hierarchical relationships among strange circles in 
their representation of input pitch-classes.
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Classifying Extended Tetrachords

7.1 Extended Tetrachords

7.1.1 Extended Chords

Chapter 6 described a multilayer perceptron for classifying four different types of 
tetrachords, and detailed its internal structure. In this chapter, I turn to a more 
complicated musical problem, one that involves a larger set of different types of 
tetrachords. Because this problem is more complex, the multilayer perceptron that 
solves it requires more hidden units. However, these hidden units also organize 
inputs into a variety of strange circles that assist in interpreting the network’s inter-
nal structure. The four tetrachords explored in Chapter 6 were all examples of 
added note tetrachords. That is, each tetrachord started as a triad built from three 
different notes that belonged to a musical scale. I created a tetrachord by adding a 
fourth note, which also belonged to the scale, to the triad.

Figure 7-1 Musical notation for 12 different types of tetrachords, each using C as 
the root note.

A different approach to building tetrachords produces a greater variety of chord 
types. One begins with a triad formula. For instance, if one takes the first, third, and 
fifth notes of the C major scale (C, E, G), the result is the C major triad. Therefore, 
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the formula for the C major triad is 1-3-5. Adding the seventh note of the scale, B, 
produces the C major seventh tetrachord, which follows the formula 1-3-5-7.

More chords can be created by manipulating formulae similar to the one pro-
vided in the previous paragraph. For instance, one could flatten the third and the 
fifth note in the formula 1-3-5-7. This produces the formula 1-♭3-5-♭7; if C is the 
root then this formula produces the set of notes [C, E♭, G, B♭], which defines the C 
minor seventh tetrachord. Note that the flattened third and seventh notes do not 
belong to the C major scale.

In jazz, one often finds extended chords that use formulae that add notes that fall 
beyond the octave range of a major scale. For example, if one adds the D that is an 
octave higher than the second note in the C major scale to the C major triad, then 
one produces the Cadd9 tetrachord [C, E, G, D]. The formula for this chord is 1-3-5-9.

Figure 7-1 provides the musical notation, and the musical chord symbol, for 12 
different types of tetrachords. Each of these example tetrachords uses C as the root 
note of the chord. We saw four of these tetrachord types earlier in Chapter 6. The 
other eight are new; Table 7-1 provides the formula for each.

Table 7-1. The names and formulas for twelve different types of tetrachords.

Tetrachord type Formula Example and notation Forte number

Major seventh 1-3-5-7 Cmaj7 4-20(12)

Dominant seventh 1-3-5-♭7 C7 4-27

Minor, major seventh 1-♭3-5-7 Cm(maj7) 4-19

Sixth 1-3-5-6 C6 4-26(12)

Minor sixth 1-♭3-5-6 Cm6 4-27

Seventh, flat five 1-3-♭5-♭7 C7flat5 4-25(6)

Minor seventh 1-♭3-5-♭7 Cm7 4-26(12)

Augmented seventh 1-3-♭5-♭7 Caug7 4-24(12)

Diminished seventh 1-♭3-♭5-♭♭7 Cdim7 4-28(3)

Added ninth 1-3-5-9 Cadd9 4-22

Minor added ninth 1-♭3-5-9 Cm(add9) 4-14
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Tetrachord type Formula Example and notation Forte number

Seventh, suspended fourth 1-4-5-♭7 C7sus4 4-23(12)

Note. An example of each chord is provided in Figure 7-1. The final two columns provide 
the notation of an example chord that belongs to the type, as well as the classification 
number for the chord type from Forte’s (1973) set theory.

The formulae provided in Table 7-1 work in the context of any major scale. The 
numbers in each formula refer to a note’s position in a particular scale. That is, 1 is 
the first note in a particular scale, 3 is the third note in a particular scale, and so on. 
This means that there are 12 different versions of each of the chord types listed in 
Table 7-1: one for each of the 12 possible major scales.

When I use these formulae to create tetrachords in different keys, some inter-
esting relationships between chords arise. Consider the 6 chord whose formula is 
1-3-5-6. In the context of the C major scale this produces the C6 chord whose notes 
are [C, E, G, A]. Now consider applying the formula for the minor seventh tetrachord 
(1-♭3-5-♭7) in the context of the A major scale. This produces the Am7 chord whose 
notes are [A, C, E, G]. Note that these notes are identical to those of C6; musically 
speaking, Am7 is identical to an inversion of C6. Similarly, the dominant seventh 
chord is the inversion of a minor sixth tetrachord in a different key.

In other words, the same set of four pitch-classes can have more than one chord 
name. If I train a network to identify tetrachord types, then it must generate both 
of these chord names to one set of four input pitch-classes. Table 7-1 also provides 
the Forte numbers of each of these chord types. Forte numbers are a system for 
classifying different musical entities that is derived from using mathematical set 
theory (Forte, 1973). Note that different tetrachord names for the same set of input 
pitch-classes have the same Forte number in Table 7-1, indicating that the chords 
have the same basic structure in spite of the fact that they have different names.

When I train a multilayer perceptron to classify the 12 different types of tetra-
chords in Table 7-1, I will again use pitch-class representation. Because of this, notes 
in extended chords like the added ninth chord are moved back into the range of a 
single octave. It is therefore useful to represent the various tetrachords in a visual 
format. One can illustrate a tetrachord in a circle of minor seconds by drawing in 
four spokes that represent the four pitch-classes present in a particular chord. Draw-
ing such a diagram will illustrate a particular chord in the context of a specific major 
key. However, this diagram represents the structure of a tetrachord type for any key: 
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if one rigidly rotates the spokes to a different position in the circle, then it will pro-
vide the notes for the same type of tetrachord, but relative to some other musical key. 
Figure 7-2 provides pitch-class diagrams for the 12 tetrachords from Figure 7-1.

Figure 7-2 Pitch-class diagrams of the 12 tetrachords from the score in Figure 7-1.

All of the chords presented in Figure 7-2 are defined with respect to the C major 
scale. The structure of the spokes in the diagrams provides an interesting perspective 
on the similarities and differences between various tetrachord types. For instance, 
it is immediately apparent that both the diminished tetrachord and the seventh 
flattened fifth tetrachord include two pairs of notes that belong to the same circle 
of tritones, because both diagrams include two long spokes that bisect the circle. 
Similarly, one can see the similarity in spoke structure between the minor seventh 
and the sixth tetrachords, as well as between the seventh and the minor sixth tetra-
chords. In the next section, we will describe training a multilayer perceptron to 
identify these 12 different types of tetrachords.
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7.2 Classifying Extended Tetrachords

7.2.1 Task

Our goal is to train an artificial neural network, when presented with four notes that 
define a tetrachord, to identify the type of tetrachord, ignoring the tetrachord’s key. 
The difference between the current network and those described in Chapter 6 is 
that the current network learns to classify input chords into 12 different categories 
instead of only four. After being trained on this task the multilayer perceptron typ-
ically turns one output unit “on” to identify tetrachord type, and turns the remaining 
11 output units “off,” when presented a tetrachord. The exception to this occurs 
when two different tetrachord types (e.g., 6 and m7) apply to the same four input 
pitch-classes. In this situation, the network turns on both of the appropriate output 
units, and turns the remaining ten output units off. 

Figure 7-3 The architecture of the multilayer perceptron trained to identify 
12 different types of tetrachords.
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7.2.2 Network Architecture

Figure 7-3 illustrates the architecture of the current network. It uses 12 input units 
to represent input pitch-classes. It requires 12 output units to identify all of the 
tetrachord types from Figure 7-1. The network requires seven hidden units to find 
a solution to the extended tetrachord problem. All of the output units and all of the 
hidden units in the network are value units.

7.2.3 Training Set

The training set consists of 144 stimuli: the 12 different tetrachords that can be 
created in the context of a particular major scale (see Figure 7-1). I create these tetra-
chords for each of the 12 different major scales. Each is encoded as an input pattern 
in which four input units are activated with a value of one, and the remaining eight 
input units are all activated with a value of zero. I pair each input pattern with an 
output pattern that indicates the tetrachord type to which the input pattern belongs. 
I train the network to turn on the output units that represent the input patterns 
type(s), and to turn all other output units off.

7.2.4 Training 

The multilayer perceptron in Figure 7-3 is trained with the generalized delta rule 
developed for networks of value units (Dawson & Schopflocher, 1992) using the 
Rumelhart software program (Dawson, 2005). During a single epoch of training 
each pattern is presented to the network once; the order of pattern presentation is 
randomized before each epoch.

All connection weights in the network are set to random values between −0.1 and 
0.1 before training begins. In the network described in detail below, each µ is initial-
ized to zero but is then modified by training. A learning rate of 0.01 is employed. 
Training proceeds until the network generates a “hit” for every output unit for each 
of the 144 patterns in the training set. Again, a “hit” is defined as activity of 0.9 or 
higher when the desired response is one or as activity of 0.1 or lower when the 
desired response is zero. A network that contains seven hidden value units solves 
this problem readily, typically converging after between 7000 and 10,000 epochs 
of training. The example network described in more detail in the next section con-
verges after 7236 epochs of training.
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7.3 Interpreting the Extended Tetrachord Network

This section provides an analysis of the connection weight structure of each of the 
hidden units in the trained network. This analysis reveals a number of interesting 
musical regularities in this network’s structure. However, it is very detailed. The 
reader, who is less interested in these details, and more interested in a general 
summary of these results, will find this summary in Section 7.4.

7.3.1 Jittered Density Plots

The extended tetrachord network is the most complicated one that we have 
encountered in this book. This is because it has seven hidden units, making it 
very difficult to orient an interpretation by graphing the hidden unit space. For 
this reason, I will begin to interpret the network by examining two different char-
acteristics of each hidden unit: the weights of the connections that feed into a 
hidden unit and the activity produced by the hidden unit when it is presented 
each of the 144 input patterns.

With respect to patterns of connectivity, each of the hidden units organizes input 
pitch-classes into some of the strange circles from Chapter 6. This is particularly 
helpful for interpreting this more complicated network. Instead of considering the 
effect of the 12 different pitch-classes on the hidden unit, we can consider smaller 
sets of pitch-classes that are treated as being equivalent. For example, we will see 
that an account of Hidden Unit 1’s role in the network can be achieved by consid-
ering input pitch-classes as belonging to one of the two circles of major seconds, 
or as belonging to one of the six circles of tritones.

With respect to hidden unit activity, I will take advantage of a characteristic 
that is frequently exhibited by value units (Berkeley et al., 1995), although in some 
cases it may be found in other types of processors (Berkeley & Gunay, 2004). When 
the activities of a hidden value unit are graphed using a jittered density plot, this 
plot is often organized into different bands. Each band contains a subset of input 
patterns that share certain properties which, when identified, help in understand-
ing the features being detected by the hidden unit. Let us describe the general use 
of banded jittered density plots in more detail before using them to interpret the 
extended tetrachord network.

A jittered density plot can be thought of as a one-dimensional scatter plot. Con-
sider producing a jittered density plot for the activities generated by one hidden 
unit to each of the patterns of a training set. Each pattern is represented by one 
dot in the plot. The position of the dot along the x-axis of the graph provides the 
activity produced in the hidden unit by that pattern. The position of the dot along 



doi: 10.15215/aupress/9781771992206.01

176 Connectionist Representations of Tonal Music

the y-axis is a random number that has no meaning; this random jittering prevents 
different dots in the plot from overlapping as much as possible.

An example jittered density plot for Hidden Unit 1 of the current network is 
provided in Figure 7-4 below. Note that the x-axis ranges from zero to one, because 
this is the activity range of a value unit. There are 144 different dots in this plot, one 
for each of the 144 tetrachords in the training set.

Figure 7-4 The jittered density plot for Hidden Unit 1 in the extended tetrachord 
network.

Berkeley et al. (1995) discovered that in many cases the jittered density plots of 
hidden value unit activities organize themselves into distinct bands. This is true of 
the jittered density plot in Figure 7-4. It is organized into three different bands: in 
Band A, 24 of the input patterns generate zero activity in this unit; in Band B, 48 
of the patterns generate activity that ranges between 0.11 and 0.20, and in Band C, 
the remaining 72 patterns generate activity between 0.99 and 1.

Berkeley et al. (1995) discovered that patterns that belong to the same band in 
a jittered density plot share certain properties. By examining the characteristics of 
just the subset of patterns that fall into one band, one can interpret the features 
they share and use these features to determine the unit’s function in the network 
(Dawson et al., 1997; Dawson et al., 2000b; Dawson & Piercey, 2001). Figure 7-4 
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demonstrates that distinct banding is present when the activities of one of the 
extended tetrachord’s hidden units are graphed in a jittered density plot. Fortunately 
for us, banding is present for almost all of the hidden units of this network. I will 
take advantage of this banding by taking just those input patterns that fall into a 
particular band and determining what features these tetrachords have in common. 
Furthermore, this interpretation is informed by our understanding of the strange 
circles found in the connection weights in each hidden unit. Together these two 
properties will lead to a detailed understanding of the internal structure of the 
extended tetrachord network. As was the case earlier in Section 6.6, I will discuss the 
hidden units out of order so that the units that are easier to interpret are described 
before those that are more complicated.

7.3.2 Hidden Unit 1

Figure 7-5 provides a graph of the connection weights that feed into Hidden Unit 
1 from the 12 input pitch-class units, combined with the jittered density plot from 
Figure 7-4. It is obvious from Figure 7-5 that this hidden unit organizes input signals 
in terms of strange circles.

First, all of the positive weights come from pitch-classes that belong to one of the 
circles of major seconds, and all of the negative weights come from pitch-classes that 
belong to the other circle of major seconds. Second, if one examines the set of six 
positive weights, then it becomes apparent that there is some variation in strength. 
This variation occurs because this hidden unit assigns the identical weight to pairs 
of pitch-classes that belong to the same circle of tritones. This variation in weights 
permits the hidden unit to distinguish one circle of tritones from another. This is 
also true of the six negative weights.

What does this hidden unit detect? To begin, let us note that at the end of train-
ing this unit’s µ has a value of −0.01, indicating that it turns on when it receives a 
near-zero net input. With this fact in mind, and recognizing that Hidden Unit 1 
appears to use equivalence classes involving circles of minor seconds and circles 
of tritones, let us consider the patterns that fall into each of the three bands of the 
jittered density plot.

First, consider the subset of patterns that belong to Band A in Figure 7-5. There 
are only two types of tetrachords in this subset: all of the aug7 chords and all of the 
7♭5 chords. What do these tetrachords have in common? Each chord includes four 
pitch-classes that all belong to only one of the circles of major seconds. As a result, 
all four of the signals sent to Hidden Unit 1 by one of these chords pass through 
weights that all have the same sign. These signals cannot cancel one another out; 
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the hidden unit will receive either an extreme positive or an extreme negative net 
input which causes it to turn off because of its near zero µ.

Now consider the subset of patterns that fall into Band C in Figure 7-5. These 
patterns consist of all the 6, 7sus4, dim7, m (add9), m7, and maj7 tetrachords. What 
does this large collection of different types of chords have in common?

Figure 7-5 The connection weights and the jittered density plot for Hidden Unit 1.
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First, all of these tetrachords have two pitch-classes that belong to one circle of 
major seconds and two others that belong to the other circle of major seconds. This 
permits the signals sent from these chords to cancel each other out, producing a 
near-zero net input, and turning Hidden Unit 1 on. Second, the tetrachords that 
belong to this band (with the exception of the º7 chords, which are a special case) 
include pitch-classes that each belong to a different circle of tritones. As a result, 
four different circles of tritones are represented in each chord. For any chord, which 
four circles of tritones are represented is important: two of the sampled circles have 
negative weights, while the other two have positive weights.

As a result, one finds in these tetrachords two specific patterns of tritone sam-
pling. These are illustrated in Figure 7-6A and Figure 7-6B. In these figures, each 
tritone circle is a line that bisects the pitch-class diagram; there are six in each 
figure. Tritone circles that have a pitch-class that belongs to the pitch-classes of 
these tetrachords are represented as solid lines; dashed lines indicate tritone circles 
that are not represented. In the first pattern exhibited by the chords that belong 
to Band C (Figure 7-6A), the tetrachords contain pitch-classes from four adjacent 
tritone circles. Note that because weights in the network are organized by circles of 
major seconds, two negative and two positive weights are involved in these chords, 
producing zero net input. The same is true for the second pattern (Figure7-7B): a 
tetrachord contains pitch-classes from two adjacent tritone circles, not from the 
next, and then contains pitch-classes from the next two adjacent tritone circles. 
Only the diminished seventh (º7) tetrachords fail to exhibit this pattern, but this 
is because they represent a special case of Figure 7-6B: they sample two circles of 
tritones twice, and these two samples are from circles that are 90° apart in the 
diagram (see Figure 7-2).

The importance of which circles of tritones are represented by a tetrachord’s 
pitch-classes emerges when we consider the final band of patterns that produce 
weak activity in Hidden Unit 1 (Band B, Figure 7-5). This band includes all of the 
remaining types of tetrachords (7, add9, m (maj7), m6). Half of these chords fall into 
this band because they represent three different circles of tritones, not four. In other 
words, they contain one pitch-class each from two different circles of tritones, and 
contain two pitch-classes from a third. As a result, the input signals do not cancel 
one another out.

However, the remaining tetrachords that belong to this band sample pitch-classes 
from four different tritone circles. Why do these chords not turn Hidden Unit 1 on? 
The answer to this question is that they represent these tritone circles following 
a different pattern than the two discussed above. As shown in Figure 7-6C, they 
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contain pitch-classes from three adjacent tritone circles, skip the next, and then 
contain a pitch-class from the next. This pattern of sampling produces an unbal-
anced signal, generating weak activity in this hidden unit.

Figure 7-6 Three patterns of tritone sampling for tetrachords. A and B are 
patterns that turn Hidden Unit 1 on; C is a pattern that generates weak activity in 
Hidden Unit 1.

7.3.3 Hidden Unit 2

Figure 7-7 provides the connection weights and the jittered density plot for 
Hidden Unit 2 of the extended tetrachord network. This hidden unit organizes 
input pitch-classes into circles of minor thirds, assigning a weight of 0.79 to those 
pitch-classes that belong to the first circle, a weight of −0.07 to those pitch-classes 
that belong to the second, and a weight of −0.50 to those pitch-classes that belong 
to the third. At the end of training, the value of µ for this unit is −0.13.

This jittered density plot is similar to the one for Hidden Unit 1, as it is organized 
into three distinct bands. The first is near zero, the second is between 0.2 and 0.4, 
and the third is between 0.8 and 1.0. The bands for Hidden Unit 2 are slightly more 
dispersed than those observed for Hidden Unit 1.
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Figure 7-7 The connection weights and the jittered density plot for Hidden Unit 2.

Let us first consider the patterns that belong to Band C in Figure 7-7. There are 52 
such patterns, representing 7sus4, add9, aug7, dim7, m (add9), m (maj7), and maj7 
tetrachords. Interestingly, the band does not capture all instances of each chord 
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type: it captures four instances of the diminished seventh chord and eight instances 
of each of the other chord types. Whatever property belongs to the chords in this 
band does not characterize all 12 instances of each chord type.

What properties do the tetrachords that belong to this band share? All of 
these tetrachords (except the diminished sevenths, which are a special case) select 
pitch-classes from each of the three circles of minor thirds. That is, they select one 
pitch-class from each of two of these circles, and select two pitch-classes from the 
third circle. Furthermore, 24 of the tetrachords in Band C include one pitch-class 
associated with a weight of 0.79, a second associated with a weight of −0.07, and 
two pitch-classes associated with a weight of −0.50. This results in a net input of 
about −0.30, which is close enough to µ to produce activity of about 0.90. Another 
24 of the tetrachords include two pitch-classes associated with a weight of −0.07, 
and two others associated with each of the other two weights. This produces a net 
input of 0.14, resulting in activity of just over 0.80.

The diminished seventh chords that fall in this band are a special case, because 
they are composed of all four pitch-classes that are associated with a weight of 
−0.07, which all belong to the same circle of minor thirds. These four weights sum 
to −0.28, a net input that produces activity of 0.88 in Hidden Unit 2.

Why do we only find subsets of different tetrachord types in this band? The struc-
ture of the four diminished seventh tetrachords provides an answer to this question. 
The other eight diminished seventh chords are composed of four pitch-classes that 
all belong to one of the other two circles of minor thirds. When I sum these weights, 
the resulting net input is too extreme to produce high activity in Hidden Unit 2. 
This removes them from this band.

A similar story holds for the other types of tetrachords in this band. Recall that 
the band captures eight instances of each type, but four other instances do not 
belong to the band. This is because the specific set of weights for Hidden Unit 2 is 
such that these subsets of tetrachords generate an extreme net input that removes 
them from the band. For example, Gmaj7, Cmaj7, Fmaj7, and G♯maj7 are similar 
to all of the other major seventh chords in that they include two pitch-classes from 
one circle of minor thirds and one from each of the other two. However, given the 
weights for Hidden Unit 2, their particular combination of notes produces a net 
input that removes them from the band.

In particular, each of these chords includes two pitch-classes from the circle of 
minor thirds assigned a weight of 0.79 by this unit, and one pitch-class from each 
of the other two circles. As a result, these four major seventh chords generate a net 
input of one, which turns Hidden Unit 2 off. This separates these four tetrachords 
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from the other eight that fall in the high band. A similar account holds for all of 
the other chords that belong to a tetrachord type captured by the band, but which 
are not part of the band.

Let us next consider the band of patterns that produce weak activity (ranging 
between 0.2 and 0.4) in Hidden Unit 2 (Band B). There are 24 such patterns, repre-
senting m6, 6, m7, 7, and 7♭5 tetrachords. Again, the band does not capture all 
instances of each chord type. All of the chords that fall in this band share one prop-
erty: they do not include a pitch-class from one of the three circles of minor thirds. 
Either they include three pitch-classes from one circle and a fourth from one other, 
or they include two pitch-classes from one circle and two others from another. In 
either case, the weights associated with these sets of pitch-classes cannot cancel 
each other out; these chords produce net inputs of either −0.72 or 0.58.

From the discussion above, it appears that high activity in Hidden Unit 2 indi-
cates that it detects a tetrachord characterized by one of two different patterns. 
One pattern involves four pitch-classes associated with a particular combination of 
connection weights (one strong positive, one weak negative, two strong negatives). 
The second pattern involves four pitch-classes each of which is associated with a 
weak negative connection weight.

The patterns that belong to Band A in Figure 7-7 produce zero activity in Hidden 
Unit 2 because they fail to exhibit either of these combinations of weights. As a 
result, the 68 patterns that belong to this band represent all 12 different types of 
tetrachords in the training set.

When banding in the jittered density plots of value units was first discovered 
(Berkeley et al., 1995), it was noted that patterns associated with a band associated 
with near-zero activity were patterns that did not share any defining positive fea-
ture. Instead, they shared a negative feature: they all lacked the features that the 
hidden unit detects, and which produce higher activity. As a result, in many cases 
a detailed interpretation of the features of patterns that belong to a “zero band” is 
neither informative nor possible. Band A in Figure 7-7 is an example of this situation.

7.3.4 Hidden Unit 4

Band C for the jittered density plot of Hidden Unit 2 (Figure 7-7) indicates that this 
unit generates high activity to a number of different types of tetrachords. However, 
for each of these different types, it generates this high activity to only eight of the 12 
possible instances. What does the network do to the four instances of each chord 
type omitted from this band in Hidden Unit 2? They are the only chords that pro-
duce high activity in Hidden Unit 4!
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Figure 7-8 provides the connection weights and the jittered density plot for 
Hidden Unit 4. Examining the weights indicates that this hidden unit, like Hidden 
Unit 2, organizes input pitch-classes into circles of minor thirds, assigning a weak 
negative weight to those pitch-classes that belong to the first circle, a more nega-
tive weight to those pitch-classes that belong to the second, and a strong positive 
weight to those pitch-classes that belong to the third. At the end of training, the 
value of µ for this unit is −0.06. The weights also indicate that pitch-classes are 
also organized into equivalence classes based upon circles of tritones: pitch-classes 
that are in the same circle of tritones are assigned identical weights. Indeed, this 
organization is cleaner than the organization in terms of circles of minor thirds, 
because there is some variation of weight values assigned to pitch-classes in the 
same circle of minor thirds.

The lower part of Figure 7-8 indicates that the jittered density plot of Hidden 
Unit 4 is organized into two fairly broad bands: patterns that belong to Band A gen-
erate activity that ranges between 0.00 and 0.50, while patterns that belong to Band 
B generate activity that ranges between 0.80 and 1.00. I consider these as different 
bands because there is a large space in the graph between them.

Band B in Figure 7-8 consists of 24 patterns, representing four instances each of 
7sus4, add9, aug7, m (add9), m (maj7), and maj7 tetrachords. Importantly, these are 
exactly the same types of tetrachords found in Band C of Hidden Unit 2, with one 
exception: Band B does not include any diminished seventh chords. More import-
antly, the four instances of each type of tetrachord found in Band B are precisely 
the four instances not found in Band C of Hidden Unit 2.

What do all of the tetrachords in Band B have in common? Each chord includes 
two pitch-classes associated with a small negative weight, one pitch-class associated 
with a strong negative weight, and one pitch-class associated with a strong positive 
weight. Variation in the weights (for instance, the small negative weight could be 
either −0.12 or −0.33) produces variation in net input, which is why Band B is wide. 
On average, a pattern that belongs to this band generates a net input of −0.18, which 
is close enough to µ to produce strong activity in Hidden Unit 4.

Why does this band capture a different subset of tetrachord instances when 
Hidden Unit 4 and Hidden Unit 2 organize input pitch-classes according to the same 
strange circles? Compare the weights in Figure 7-8 to those in Figure 7-7. Note that 
different weight values are assigned to the same strange circles in the two hidden 
units. For instance, Hidden Unit 2 assigns a strong positive weight to pitch-classes 
that belong to the first circle of minor thirds, while Hidden Unit 4 assigns a weak 
negative weight to the same pitch-classes. These differences cause some instances of 
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a tetrachord type to generate strong activity in one hidden unit, but also to generate 
weak activity in the other.

Figure 7-8 The connection weights and the jittered density plot for Hidden Unit 4.
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What about Band A in Figure 7-8? None of these patterns is defined with the 
same combination of pitch-classes (two small negative weights, one large negative 
weight, and one large positive weight) that signals membership in Band B. Of 
course, some other combinations of weights produce moderate Hidden Unit 4 
activity, but none is as optimal as the Band B combination. High activity in Hidden 
Unit 4 represents the detection of this particular combination, which serves to 
capture 24 tetrachords that (musically) should have been in Band C of Hidden 
Unit 2, but were not.

7.3.5 Hidden Unit 7

Figure 7-9 presents the connection weights and the jittered density plot for Hidden 
Unit 7 of the extended tetrachord network. Importantly, at the end of training the 
value of µ for this hidden unit was −0.02. Thus in order for this unit to generate high 
activity, the four signals being sent to it from input units must cancel each other 
out to provide a near-zero net input.

The connection weights for this network indicate that it organizes input 
pitch-classes into equivalence classes defined by the four circles of major thirds. 
All pitch-classes that belong to the first circle of major thirds have a strong negative 
weight; those that belong to the second have a weak positive weight; those that 
belong to the third have a strong positive weight; and those that belong to the fourth 
have a weak negative weight.

In addition to organizing pitch-classes in terms of circles of major thirds, the 
connection weight values of Hidden Unit 7 provide an interesting balancing of 
pairs of pitch-classes. Pairs of pitch-classes that are a major second (e.g., A, B), a 
tritone (e.g., A, D♯), or a minor seventh (e.g., A, G) apart are balanced, because they 
are assigned weights that are equal in magnitude but opposite in sign. Pairs of 
pitch-classes separated by any other musical interval will not cancel each other’s 
signal out because of differences in magnitude or sign of their respective connec-
tion weights.

As was the case for Hidden Units 1 and 2, the jittered density plot for Hidden 
Unit 7 is organized into three distinct bands. Two of these bands (Band A and Band 
B in Figure 7-9) are associated with low activity in Hidden Unit 7, while patterns 
that belong to Band C turn Hidden Unit 7 on. Band C in Hidden Unit 7’s jittered 
density plot contains 36 input patterns that comprise all 12 instances of just three 
different types of tetrachords: 7flat5, 7sus4, and dim7. What do these three different 
types of chords have in common?
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Figure 7-9 The connection weights and the jittered density plot for Hidden Unit 7.

All three of these different types of tetrachords include four pitch-classes that are 
completely balanced because pairs of these pitch-classes are separated by a major 
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composed of two pairs of pitch-classes that are both a tritone apart (Figure 7-2). The 
two pitch-classes in each pair cancel each other’s signal out, producing a net input 
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of zero, which turns Hidden Unit 7 on. Similarly, a 7sus4 chord can be described as 
two pairs of pitch-classes with each pair separated by a major second (Figure 7-2). 
As well, a 7flat5 can be described either as two pairs of pitch-classes with each pair 
separated by a major second, or as two pairs of pitch-classes with each pair separated 
by a tritone (Figure 7-2). These different descriptions amount to the same effect: 
two balanced signals from each pair of pitch-classes, generating near-zero net input 
and turning Hidden Unit 7 on.

The balancing described above is not true of any of the patterns that belong to 
the other two bands in Figure 7-9. Band B consists of 24 different input patterns 
comprised of six instances each of 6, aug7, m (add9), and m7 tetrachords. Each of 
these patterns generates small activity in Hidden Unit 7 (ranging between 0.09 and 
0.19) because each is partially balanced in the sense described above. That is, each 
of these tetrachords contains one pair of pitch-classes that balance because they 
are separated by a major second, a tritone, or a minor seventh. However, the other 
pair of tones is not balanced. Interestingly for each of these chords the balanced 
pair of pitch-classes always involves one weight that is an extreme negative and one 
that is an extreme positive. They produce some activity in Hidden Unit 7 because 
the unbalanced pitch-classes involve smaller weights, making net input slightly less 
than for the remaining tetrachords.

The remaining tetrachords all belong to Band A in Figure 7-9 and all fail to 
exhibit the kind of balancing discussed above. Eighty-four different patterns belong 
to this band. Sixty are completely unbalanced tetrachords: a major second, a tritone, 
or a minor seventh separates none of their pitch-classes. The remaining 24 are the 
“cousins” of those that belong to Band B. That is, one of their pitch-class pairs is bal-
anced, but the other is not. The difference between these 24 patterns and the 24 that 
belong to Band B is that they all involve balancing of a weakly negative and a weakly 
positive weight. As a result, their unbalanced weights are both either extremely 
positive or extremely negative. As a result, these chords generate an extreme net 
input, which turns Hidden Unit 7 off.

7.3.6 Hidden Unit 6

Figure 7-10 provides the connection weights and the jittered density plot for Hidden 
Unit 6. At the end of training, this hidden unit has a value of µ equal to 0.07. The 
weights presented in this figure indicate that this hidden unit groups pitch-class 
inputs into equivalence classes based upon the six different circles of tritones. That 
is, pairs of pitch-classes that are a tritone apart have the same connection weight.
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Figure 7-10 The connection weights and the jittered density plot for Hidden Unit 6.

It is also obvious from the weights illustrated in Figure 7-10 that this hidden unit 
appears to balance, or nearly balance, adjacent triplets of pitch-classes. For instance, 
consider the first three pitch-classes (A, A♯, B). The pattern of weights assigned to 
these three inputs seems nearly identical in magnitude but opposite in sign to the 
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pattern of weights assigned to the next three pitch-classes (C, C♯, D) or to the last 
three pitch-classes (F♯, G, G♯).

Table 7-2 below provides a more accurate indication of which pairs of input 
pitch-classes cancel each other out given the particular connection weights in Figure 
7-10. It is created by only turning on two of the input units that feed into Hidden 
Unit 6 at a time. The resulting net input is simply the sum of the weights associated 
with each of the activated input units.

Table 7-2 The activity produced in Hidden Unit 6 by all possible pairs of different input 
pitch-classes.

A A# B C C# D D# E F F# G G#

A — 0.03 0.00 0.58 0.05 0.00 1.00 0.03 0.00 0.58 0.05 0.00

A# 0.03 — 0.00 0.28 0.98 0.27 0.03 0.00 0.00 0.29 0.98 0.27

B 0.00 0.00 — 0.01 0.26 0.99 0.00 0.00 0.00 0.01 0.26 0.99

C 0.58 0.28 0.01 — 0.00 0.00 0.58 0.28 0.01 0.10 0.00 0.00

C# 0.05 0.98 0.26 0.00 — 0.00 0.05 0.98 0.26 0.00 0.00 0.00

D 0.00 0.27 0.99 0.00 0.00 — 0.00 0.28 0.99 0.00 0.00 0.00

D# 1.00 0.03 0.00 0.58 0.05 0.00 — 0.03 0.00 0.58 0.05 0.00

E 0.03 0.00 0.00 0.28 0.98 0.28 0.03 — 0.00 0.28 0.98 0.28

F 0.00 0.00 0.00 0.01 0.26 0.99 0.00 0.00 — 0.01 0.26 0.99

F# 0.58 0.29 0.01 0.10 0.00 0.00 0.58 0.28 0.01 — 0.00 0.00

G 0.05 0.98 0.26 0.00 0.00 0.00 0.05 0.98 0.26 0.00 — 0.00

G# 0.00 0.27 0.99 0.00 0.00 0.00 0.00 0.28 0.99 0.00 0.00 —

Note. For a particular activity in the table, the pitch-class label for the row provides one 
member of the pair, and the pitch-class label for the column provides the other member. 
Pairs that cancel each other’s signal out, producing high activity in the hidden unit, 
are indicated by the dark grey cells. Pairs that weakly cancel each other out, producing 
moderate activity, are indicated by the lighter grey cells.

Each net input in this table can be fed into a Gaussian activation function (with µ = 
0.07) to determine the activity produced in Hidden Unit 6. This activity is reported 
in each cell in Table 7-2. In this table, the column label indicates one of the activated 
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input units, and the row label indicates the other. (Pairs that correspond to the diag-
onal of the matrix were not presented, because in this multilayer perceptron it is not 
possible to send two signals simultaneously from one input unit.) If the Gaussian 
activity produced is 0.90 or higher, then this indicates that the signals from the two 
input units cancel each other out, turning Hidden Unit 6 on. The input pairs that 
cancel each other out have grey cells in Table 7-2.

If tritone balancing were the only kind of balancing evident in Table 7-2, then 
only six different pairs of pitch-classes would cancel each other’s signal out. An 
inspection of Table 7-2 indicates that nine different pairs of inputs cancel one 
another out. (Note that the table is symmetric, and that each pair occurs twice in 
the table.) Each is highlighted in a dark grey cell in the table. In addition, four other 
pairs of pitch-classes nearly cancel one another out, because they produce activity 
of 0.58. The weaker activity produced by these pairs of inputs is highlighted with 
lighter grey cells in the table. The pattern of grey cells in Table 7-2 is very regular, 
consistent with the regular pattern of alternating connection weights in Figure 7-10. 
In general, pitch-class pairs that are separated by a minor third or by a major sixth 
cancel one another out. There are two caveats to add to this general description. 
First, in some instances (e.g., A paired with C) the two weights are different enough 
in magnitude that they do not completely cancel one another out, but cancel each 
other out enough to produce moderate activity. Second, even though A and D♯ are 
a tritone apart, their connection weights are so close to zero that this pair produces 
high activity in Hidden Unit 6 too.

With this understanding of the connection weight structure in Figure 7-10, let us 
now consider the nature of the bands in the jittered density plot for Hidden Unit 6.

The jittered density plot for Hidden Unit 6 reveals five different bands. Exclud-
ing Band A (which again appears to be a “zero loading” band with no interpretable 
structure), these bands share one interesting qualitative characteristic: all of the 
tetrachords that belong to the same band are missing a pair of pitch-classes. Patterns 
in Band E are missing both A and D♯; patterns in Band D are missing both D and G♯. 
Each of these missing pairs defines a tritone circle (i.e., [A, D♯] or [D, G♯]). Patterns 
in Band C are all missing both A♯ and G, which are separated by a minor third. The 
two patterns that belong to Band B (C♯m6 and Gm6) are missing A and D♯, B and 
F, and C and F♯. Each of these pairs defines a tritone circle.

Quantitatively all of the bands in the Figure 7-10 jittered density plot can be 
explained in terms of the balancing of adjacent pitch-classes. Let us use the con-
nection weights in Figure 7-10 to identify four different sets of three pitch-classes: 
let Subset 1 be [A, A♯, B], let Subset 2 be [C, C♯, D], let Subset 3 be [D♯, E, F], and let 
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Subset 4 be [F♯, G, G♯]. Our previous discussion of the connection weights for each 
of these subsets (see Figure 7-10 and Table 7-2) suggested that if the same pattern of 
input activity is present in two of these subsets, then their activities will all cancel 
out, producing high activity. For instance, imagine an input pattern that includes 
both A and B as pitch-classes. This corresponds to the pattern of activity [1, 0, 1] in 
Subset 1. If this same pattern of activity is present in Subset 2 or Subset 4, then the 
signals from the two different subsets will cancel out, producing high activity in 
Hidden Unit 6. However, if this same pattern of activity is present in Subset 3, the 
activities will not cancel out, because these two subsets of pitch-classes have the 
same connection weights.

We can analyze each input-pattern that belongs to a band in terms of the pat-
terns of activity present in each of the four pitch-class subsets for that pattern. We 
can perform this analysis both qualitatively (e.g., is the pattern of activity in Subset 1 
the same as the pattern in Subset 2) and quantitatively (e.g., what is the contribution 
to net input from Subset 1 or from Subset 2). These analyses indicate that band mem-
bership can be explained by patterns of activity balancing across the four different 
subsets. For example, consider Band E in Figure 7-10. It consists of 14 different tetra-
chords, including dim7, aug7, m7, and 6 chords. All but two of these input patterns 
are completely balanced in the sense that they have the same pattern of activity in 
both Subsets 1 and 2, and have the same pattern of activity in both Subsets 3 and 4. 
This produces net inputs near 0.07, producing high activity in Hidden Unit 6.

The only exceptions to this are the two augmented seventh chords (F♯aug7 and 
Caug7) found in Band E. These two tetrachords have identical patterns of activity 
in Subsets 1 and 3, which do not balance, and which produce a net input of 1.09 
from each subset. However, they also have patterns of activity that produce a net 
input of −0.39 from a third subset, and a net input of −1.66 from the fourth. When 
all four net input components are combined, the final net input for both chords is 
0.13, producing Hidden Unit 6 activity of 0.99.

Band D in Figure 7-10 contains 20 different input patterns, representing a var-
iety of different types of tetrachord [dim7, aug7, m7, 6, m6, add9, and m (maj7)]. 
Of these 20 patterns, 12 are similar to those described for Band E: Subsets 1 and 2 
have the same pattern, as do Subsets 3 and 4. However, because the tetrachords in 
this band include A and D♯, these two pitch-classes do not completely cancel out 
corresponding pitch-classes in the other subsets (see Table 7-2). As a result, the net 
inputs for these patterns are slightly larger, producing slightly lower Hidden Unit 
6 activities. This is true even when the patterns of activities in complementary 
subsets are identical.
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The remaining eight patterns in Band D have less balance between subsets but 
still produce small enough net inputs to generate high Hidden Unit 6 activity. Two 
of these chords are augmented sevenths that include either an A or a D♯ (Aaug7, 
D♯aug7). Their patterns of activity across subsets are similar to the two augmented 
seventh chords in Band E, but their net input is slightly more extreme (around −0.17) 
because A or D♯ are involved with weaker balance (Table 7-2). The remaining six 
input patterns in this band involve balance between two of the subsets, but the other 
two are not balanced. Again, the weights of the particular pitch-classes involved 
are such that net input is low enough to generate strong activity in Hidden Unit 6.

The remaining bands in the Figure 7-10 jittered density plot involve less balance 
between subsets and more extreme net inputs, decreasing Hidden Unit 6 activity 
even further. For instance, Band C consists of eight tetrachords, half of which are 
sixths and half of which are minor sevenths. None of the subsets balances any of 
the others for any of these input patterns. However, each of these eight tetrachords 
has one subset that has a zero net input. The net inputs from the remaining three 
subsets sums to either −0.34 or 0.34, producing activity of about 0.60

Band B consists of only two tetrachords, C♯m6 and Gm6. Both of these tetra-
chords have the same pattern of activity in Subsets 1 and 3, producing net input of 
1.09 in each. This is the same situation we observed for the two augmented seventh 
chords that belong to Band E. The difference emerges in terms of the net inputs 
produced for these two minor sixth chords for the other two subsets, which are 
−1.66 and −0.94 respectively. In sum, these two chords generate a net input of −0.42, 
which results in only moderate Hidden Unit 6 activity.

The remaining 98 tetrachords belong to Band A. These are instances of nine 
of the 12 different types of tetrachord, including all of the 7flat5, 7sus4, m (add9), 
and maj7 chords. Only the 6, m7, and dim7 tetrachords are not found in this band. 
In general, there is less and less balance among the four subsets of inputs as one 
inspects the chords that belong to this band. When balance does occur, it is typically 
between only two of the subsets; the remaining two subsets are so unbalanced that 
extreme net input is the result. The net inputs found for the patterns in this band 
range from −4.11 to 3.43. There is substantial variability in this range, and sometimes 
net input is small (e.g., around −0.57. This explains why this band is moderately 
broad in Figure 7-10.

7.3.7 Hidden Unit 5

Figure 7-11 provides the connection weights and the jittered density plot for Hidden 
Unit 5. At the end of training, its µ is equal to −0.03.
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Figure 7-11 The connection weights and the jittered density plot for Hidden Unit 5.

Unlike the previous hidden units that I have analyzed, Hidden Unit 5 does not appear 
to organize pitch-classes into equivalence classes based upon musical intervals. 
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Instead, it exhibits tritone balance: pairs of pitch-classes that are a tritone apart 
have weights that are equal in magnitude but opposite in sign.

Although it is less evident than was the case in Figure 7-10, Figure 7-11 indicates 
that Hidden Unit 5 is also structured to produce balance between patterns of activity 
defined over subsets of three adjacent input pitch-classes. Again, let Subset 1 be [A, 
A♯, B], let Subset 2 be [C, C♯, D], let Subset 3 be [D♯, E, F], and let Subset 4 be [F♯, 
G, G♯]. An inspection of Figure 7-11’s connection weights indicates that two pairs 
of these subsets appear to balance one another: Subset 3 balances Subset 1, while 
Subset 4 balances Subset 2.

A quantitative examination of this pattern of connection weights reveals a tre-
mendous amount of balancing or near balancing within its structure. As was done 
with Hidden Unit 5, I present every possible pair of input pitch-classes to this hidden 
unit. The net input for each pair is the sum of the weights of the two pitch-classes. 
I then compute the activity produced in Hidden Unit 5 by passing each of these net 
inputs through a Gaussian activation function (with µ = −0.03). Table 7-3 presents 
the results.

Table 7-3 indicates that there is a great deal more balancing possible with the set 
of connection weights for Hidden Unit 5 than there was for Hidden Unit 6. There are 
19 different pairs of pitch-classes that generate activity of 0.9 or higher, indicating 
near-perfect balance. These cells are highlighted in grey in the table. (Again, this 
table is symmetric, so that each of these pairs is represented twice.) An additional 
28 different pairs of pitch-classes nearly balance, and generate activity that ranges 
between 0.5 and 0.9.

With this degree of balancing and near balancing between pairs of connection 
weights, and with the potential for balancing between pairs of subsets of input 
patterns, it is perhaps not surprising that the jittered density plot in Figure 7-11 
exhibits a large number of fairly narrow bands. In order to understand the nature of 
this banding, we can examine Hidden Unit 5 in terms of the relationships between 
patterns of activity among the four different subsets of input pitch-classes. Again, 
this analysis is both qualitative (do the subsets have the same input pattern) and 
quantitative (what is the net input generated by each subset).

Perhaps not surprisingly, the account of banding for Hidden Unit 5 is very sim-
ilar to the account detailed for Hidden Unit 6 in the preceding section. For the 40 
input patterns that belong to Band G, two different situations emerge. In one, the 
pattern for both Subsets 1 and 3 is identical, as is the pattern for both Subsets 2 and 
4. As a result, near-perfect balance is achieved and Hidden Unit 5 turns on. In the 
other, the patterns in the various subsets do not balance. However, specific pairs of 
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pitch-classes—from the large number available given Table 7-3—are combined to 
balance, again turning this hidden unit on.

Table 7-3 The activity produced in Hidden Unit 5 by all possible pairs of different input 
pitch-classes.

A A# B C C# D D# E F F# G G#

A — 0.72 0.37 0.14 1.00 0.23 1.00 0.21 0.51 0.85 0.03 0.68

A# 0.72 — 0.93 0.98 0.18 1.00 0.18 1.00 0.81 0.47 0.71 0.65

B 0.37 0.93 — 0.73 0.45 0.88 0.46 0.86 1.00 0.83 0.36 0.95

C 0.14 0.98 0.73 — 0.79 0.55 0.80 0.53 0.87 1.00 0.13 0.97

C# 1.00 0.18 0.45 0.79 — 0.63 0.03 0.66 0.32 0.11 1.00 0.20

D 0.23 1.00 0.88 0.55 0.63 — 0.64 0.69 0.97 0.95 0.22 1.00

D# 1.00 0.18 0.46 0.80 0.03 0.64 — 0.67 0.33 0.12 1.00 0.21

E 0.21 1.00 0.86 0.53 0.66 0.69 0.67 — 0.95 0.96 0.21 1.00

F 0.51 0.81 1.00 0.87 0.32 0.97 0.33 0.95 — 0.69 0.50 0.85

F# 0.85 0.47 0.83 1.00 0.11 0.95 0.12 0.96 0.69 — 0.83 0.51

G 0.03 0.71 0.36 0.13 1.00 0.22 1.00 0.21 0.50 0.83 — 0.67

G# 0.68 0.65 0.95 0.97 0.20 1.00 0.21 1.00 0.85 0.51 0.67 —

Note. Pairs that cancel each other’s signal out, producing high activity in the hidden unit, 
are indicated by the grey cells.

Proceeding through the various bands associated with less activity in Hidden Unit 
5, the general story that emerges is the same as that for Hidden Unit 6: there is a 
growing imbalance between the various pitch-classes that are combined in the pat-
terns that belong to a band, producing more extreme net inputs and lower activity 
in Hidden Unit 5.

There are some interesting parallels between the contents of some of the bands 
in Figure 7-10 and the contents of some of the bands in Figure 7-11. For example, 
Band E for Hidden Unit 6 contains only two augmented seventh chords; another 
two augmented seventh chords are the only members of Band B for that unit. For 
Hidden Unit 5, Band G contains only two m (maj7) chords; the two patterns that 
belong to Band E of the Figure 7-11 jittered density plot are also chords of this type.
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Another similarity is that almost all of the bands for Hidden Unit 5 include a 
diversity of tetrachord types. Indeed, this property seems to be true of almost all of 
the bands for each of the hidden units for the extended tetrachord network. This 
property—as well as a detailed listing of the tetrachord types in each band—will be 
the subject of Section 7.4 later in this chapter.

One difference between the bands for Hidden Unit 5 and the bands for Hidden 
Unit 6 is that the former set does not contain patterns defined by the absence of 
specific pairs of pitch-classes. This property is a consequence of the specific patterns 
of connection weights, and their possible balances, associated with each hidden unit.

7.3.8 Hidden Unit 3

Figure 7-12 provides the connection weights and the jittered density plot for Hidden 
Unit 3. The connection weights in Figure 7-12 indicate that, like Hidden Unit 5, it 
exhibits tritone balance. Furthermore, if we consider the weights in terms of the 
same four subsets that have been applied to the previous two hidden units, Subset 
1 balances Subset 3, and Subset 2 balances Subset 4. This pattern was previously 
observed in Figure 7-11.

At the end of training, the value of µ for this hidden unit is −0.01. I again com-
pute the activity generated by every possible pair of input pitch-classes. The results 
are shown below in Table 7-4. Table 7-4 indicates that there are 15 different pairs of 
inputs that cancel one another out perfectly (each pair is represented twice in the 
table). These pairs produce activity of 0.99 or higher, and have their corresponding 
cells highlighted in grey in the table. In addition to these pairs, there are 30 other 
pairs that when combined nearly balance each other’s signal, producing activity in 
Hidden Unit 3 that ranges between 0.5 and 0.9.

It is particularly interesting to compare the pattern of connection weights in 
Hidden Unit 3 (Figure 7-12) to those for Hidden Unit 5 (Figure 7-11). At first glance, 
the two patterns seem very similar. However, a closer inspection reveals important 
differences between the two. Consider the weights for Subset 1 (A, A♯, B) in Figure 
7-12, which has a strong negative followed by a moderate positive and a weak nega-
tive. This pattern is also evident in Figure 7-11—but for Subset 4 (F♯, G, G♯). Similarly 
the pattern for Subset 2 in Figure 7-12 is found instead for Subset 1 in Figure 7-11; 
the pattern for Subset 3 in Figure 7-12 is found for Subset 2 in Figure 7-11; and the 
pattern for Subset 4 in Figure 7-12 is found for Subset 3 in Figure 7-11. In short, it 
would appear that both Hidden Units 3 and 5 use the same patterns of connection 
weights (defined over the four subsets of input units), but assign these same patterns 
to different subsets of input pitch-classes.
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Figure 7-12 The connection weights and the jittered density plot for Hidden Unit 3.

This raises the question: What is the relationship between the responses of Hidden 
Units 3 and 5 to the set of input patterns, given that there are both interesting simi-
larities and differences between their patterns of connection weights?
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Table 7-4 The activity produced in Hidden Unit 2 by all possible pairs of different input 
pitch-classes.

A A# B C C# D D# E F F# G G#

A — 0.87 0.44 0.86 0.46 0.83 1.00 0.17 1.00 0.17 0.99 0.76

A# 0.87 — 0.83 0.05 0.81 0.43 0.16 1.00 0.19 1.00 0.20 0.52

B 0.44 0.83 — 0.82 0.51 0.88 0.99 0.21 1.00 0.20 1.00 0.81

C 0.86 0.05 0.82 — 0.80 0.42 0.15 1.00 0.19 1.00 0.19 0.50

C# 0.46 0.81 0.51 0.80 — 0.89 0.99 0.22 1.00 0.21 1.00 0.82

D 0.83 0.43 0.88 0.42 0.89 — 0.73 0.55 0.79 0.53 0.80 1.00

D# 1.00 0.16 0.99 0.15 0.99 0.73 — 0.89 0.42 0.88 0.44 0.81

E 0.17 1.00 0.21 1.00 0.22 0.55 0.89 — 0.85 0.06 0.84 0.46

F 1.00 0.19 1.00 0.19 1.00 0.79 0.42 0.85 — 0.83 0.49 0.86

F# 0.17 1.00 0.20 1.00 0.21 0.53 0.88 0.06 0.83 — 0.82 0.45

G 0.99 0.20 1.00 0.19 1.00 0.80 0.44 0.84 0.49 0.82 — 0.87

G# 0.76 0.52 0.81 0.50 0.82 1.00 0.81 0.46 0.86 0.45 0.87 —

Note. Pairs that cancel each other’s signal out, producing high activity in the hidden unit, 
are indicated by the grey cells.

To answer this question, we can correlate the activities of these two hidden units 
produced by each of the entire set of input patterns. We can also correlate the 
activities of each of these units with the activities of Hidden Unit 6. This is because, 
like the other two, it is sensitive to tritones, and it groups input signals into four 
different subsets.

Table 7-5 provides the resulting correlations. This table reveals very low cor-
relations between the activities of different hidden units. This means that while 
there are definite similarities among these units in terms of general patterns of 
connectivity, their connection weights are arranged in different orders. As a result, 
the tetrachords that cause high activity in one hidden unit do not do so for the 
other two. This will be important in our consideration of coarse coding in the next 
section of this chapter.
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Table 7-5 Correlations among activities of three hidden units to the 144 input patterns.

HID3 HID5 HID6

HID3 1.00

HID5 0.11 1.00

HID6 0.00 0.02 1.00

Given that Hidden Unit 3 uses patterns of connection weights similar to those 
found in Hidden Units 5 and 6, but assigns the weights to different subsets of 
inputs, I expect that an account of the various bands in Figure 7-12 would be 
very similar to the accounts provided earlier for both Hidden Unit 5 and Hidden 
Unit 6. This is indeed the case. For the 38 input patterns that belong to Band G, 
two different situations emerge. For 24 of the patterns in this band, the pattern 
of activity for both Subsets 1 and 3 is identical, as is the pattern for both Subsets 
2 and 4. As a result, near-perfect balance is achieved and Hidden Unit 3 turns on. 
In the other, the patterns in the various subsets do not balance. However, specific 
pairs of pitch-classes (for the potential, see Table 7-4) combine to balance, again 
turning this hidden unit on.

Proceeding through the various bands associated with less activity in Hidden 
Unit 3, the general story that emerges is the same as for Hidden Units 5 and 6: there 
is a growing imbalance between the various pitch-classes that are combined in 
the patterns that belong to a band, producing more extreme net inputs and lower 
activity in Hidden Unit 3.

Of course, each of the bands in Figure 7-12 picks out a variety of different tetra-
chords. A detailed list of those for the various bands in Hidden Unit 3’s jittered 
density plot is presented in the next section’s discussion of coarse coding in the 
extended tetrachord network.

7.4 Bands and Coarse Coding

7.4.1 Hidden Unit Structure

Section 7.3 presented a detailed examination of the structure of each of the seven 
hidden units in the extended tetrachord network. This revealed many details about 
the connection weight structure of each hidden unit, as well as the types of tetra-
chords that produced varying degrees of activity in each hidden unit. These details 
reveal three general points. First, the connection weight structure of each hidden 
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unit is highly regular, and this structure relates to musical intervals. Four of the 
hidden units assign input pitch-classes to equivalence classes based upon strange 
circles. Hidden Unit 1 groups pitch-classes using the two circles of major seconds and 
the six circles of tritones. Hidden Unit 2 assigns pitch-classes to equivalence classes 
based upon the three circles of major thirds. Hidden Unit 4 organizes pitch-classes 
using both the three circles of minor thirds and the six circles of tritones. Hidden 
Unit 6 uses equivalence classes based on circles of tritones. Hidden Unit 7 assigns 
pitch-classes to equivalence classes based upon the four circles of major thirds. 
The remaining two hidden units (Hidden Units 3 and 5) employ tritone balance, 
assigning weights that are equal in magnitude but opposite in sign to pitch-classes 
separated by a tritone.

Second, the connection weight structure of each hidden unit produces distinct 
banding when hidden unit activities are graphed in a jittered density plot. The 
hidden units that organize pitch-classes using strange circles exhibit either two or 
three distinct bands, while the hidden units that employ tritone balance exhibit 
five or six distinct bands. For all hidden units these bands emerge because signals 
from different pairs of pitch-classes are assigned connection weights that produce 
balance or near balance for some pairs but not others.

Third, almost all of the bands in each hidden unit’s jittered density plot are 
heterogeneous. That is, almost every band includes instances of more than one type 
of tetrachord. This is apparent in Table 7-6, which lists each tetrachord type found 
in each band of the seven jittered density plots.

Table 7-6 The types of tetrachords found in each band in each jittered density plot that 
was presented in Section 7.3.

Hidden unit Band Tetrachords in band

1 A aug7, 7flat5

B 7, m6, m(maj7), add9 

C 6, m7, maj7, dim7, 7sus4, m(add9)

2 A 6, 7, m6, m7, maj7, dim7, aug7, m(maj7), 7flat5, 7sus4, add9, m(add9) 

B 6, 7, m6, m7, 7flat5

C maj7, dim7, aug7, m(maj7), 7sus4, add9, m(add9) 
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Hidden unit Band Tetrachords in band

3 A 6, m7, maj7, 7sus4, add9, m(add9)

B 7, m6, m(maj7), add9

C 6, m7, maj7, aug7, 7sus4, m(add9) 

D 7, m6, m(maj7), add9 

E 6, m7, maj7, dim7, aug7, 7flat5 

4 A 6, 7, m6, m7, maj7, dim7, aug7, m(maj7), 7flat5, 7sus4, add9, m(add9)

B 6, 7, m7, maj7, 7flat5, 7sus4, m(add9) 

C maj7, aug7, m(maj7), 7sus4, add9, m(add9)

5 A 6, 7, m6, m7, maj7, m(maj7), 7sus4, add9, m(add9)

B 7, m6

C aug7, 7sus4, add9, m(add9) 

D 7, m7, maj7, aug7, 7sus4, m(add9) 

E m(maj7)

F 7, m6, m(maj7), add9

G 6, m7, maj7, dim7, aug7, m(maj7), 7flat5

6 A 7, m6, maj7, aug7, m(maj7), 7flat5, 7sus4, add9, m(add9)

B 7, m6, dim7, aug7

C 7, m(maj7), add9

D m6

E 6, m7

F 6, m6, m7, dim7, aug7, m(maj7), add9

G 6, m7, dim7, aug7

7 A 6, 7, m6, m7, maj7, aug7, m(maj7), add9, m(add9)

B 6, m7, aug7, m(add9)

C dim7, 7flat5, 7sus4

Table 7-6 indicates that only four of the 31 different bands are pure in the sense that 
they pick out only one type of tetrachord. Hidden Unit 5 Band B contains only m6 
chords (which are identical to the 7 chords that it also contains). Hidden Unit 5 Band 
E contains only m (maj7) chords. Hidden Unit 6 Band D only contains m6 chords; 
and Hidden Unit 6 Band E contains only 6 chords (which are identical to the m7 
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chords that it also contains). Every other band contains at least two different types of 
tetrachords. Many of these bands contain six or more different types of tetrachords.

Table 7-6 indicates some additional properties concerning the similarities and 
differences between different bands and their contents. For instance, several differ-
ent types of chords appear to be similar to one another because they are frequently 
seen together in the same band. For instance, tetrachords that belong to the four 
types 7, add9, m (maj7), and m6 are found together in eight of the 31 different bands 
in Table 7-6.

There are also substantial differences between individual hidden units in terms 
of their sensitivity to such groups of chords. For instance, bands that contain 7, 
add9, m (maj7), and m6 chords are associated with different levels of activity when 
bands from different hidden units are compared (compare Hidden Unit 1 Band B 
to Hidden Unit 5 Band F). As well, some units that have bands that contain these 
four chord types contain other tetrachord types as well, and these typically differ 
from one another. For instance, Hidden Unit 7 Band A groups these four chord 
types along with instances of 6, maj7, aug7, m (add9), and m7 chords. In contrast, 
Hidden Unit 4 Band A includes these four types along with instances of 6, m7, aug7, 
7♭5, dim7, m (add9), maj7, and 7sus4 tetrachords. Furthermore, these four chord 
types are not always found in the same band. For example, Hidden Unit 6 Band C 
contains 7, add9, and m (maj7) chords, but does not contain any m6 tetrachords.

7.4.2 Bands and Coarse Coding

The general summary of network structure provided above indicates two key facts: 
the hidden units of the extended tetrachord network are highly structured, but 
individual hidden units do not detect the presence or absence of particular tetra-
chord types. How then do the output units of the extended tetrachord network 
process hidden unit activity to identify an input pattern’s chord type?

The general answer to this question is that the extended tetrachord network 
is another example of coarse coding, a concept that was introduced in Chap-
ter 5. In coarse coding, individual hidden units serve as inaccurate detectors of 
input pattern properties. However, particularly if each hidden unit views the 
inputs from a different perspective, when different inaccurate representations 
are combined, an accurate classification emerges. Fortunately, the summary of 
band contents in Table 7-6 helps provide an explanation of coarse coding in this 
particular network.

Imagine presenting one input chord to the trained extended tetrachord net-
work and only observing the activity that it produces in each of the seven hidden 
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units. The chord produces the following activity pattern, given in ascending order 
of hidden units from H1 to H7: [0.14, 0.02, 0.01, 0.99, 0.32, 0.05, 0.00]. Given this 
activity pattern, what type of tetrachord was presented?

To answer this question, let us re-label each hidden unit activity value with 
the jittered density plot band to which that activity value corresponds. When this 
is done, the set of hidden unit bands to which the pattern belongs (in the same 
order as before) is: [B, A, A, C, C, A, A]. With this pattern of bands in hand, let us 
take Table 7-6 and delete any bands that are not present in this set. The result is 
presented as Table 7-7:

Table 7-7 The types of tetrachords found in each band to which the first single pattern 
presented to the network belongs.

Hidden unit Band Tetrachords in band

1 B 7, m6, m(maj7), add9

2 A 6, 7, m6, m7, maj7, dim7, aug7, m(maj7), 7flat5, 7sus4, add9, m(add9)

3 A 6, m7, maj7, 7sus4, add9, m(add9)

4 C maj7, aug7, m(maj7), 7sus4, add9, m(add9)

5 C 7, m6, m(maj7), add9

6 A 7, m6, maj7, aug7, m(maj7), 7flat5, 7sus4, add9, m(add9)

7 A 6, 7, m6, m7, maj7, aug7, m(maj7), add9, m(add9)

Note. The only chord type that is found in each band is the added ninth (add9), which is 
indicated in bold font.

Note that each band in Table 7-7 is inaccurate, in the sense that it contains four or 
more types of tetrachords. However, only one tetrachord type is present in all seven 
of these bands: add9. [The 7, m6, and the m (maj7) are all absent from Hidden Unit 
3 Band A, while none of the other chords (apart from add9) are present in Hidden 
Unit 1 Band B.] This means that the tetrachord presented to the network must have 
been an add9.

Consider a second example, a chord that produces the following pattern of 
hidden unit activity: [0.16, 0.24, 0.20, 0.00, 0.12, 0.14, 0.00]. In terms of band labels, 
this pattern is equivalent to [B, B, B, A, A, B, A].
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Table 7-8 The types of tetrachords found in each band to which the second single 
pattern presented to the network belongs.

Unit Band Tetrachords in band

7 add9 m(maj7) m6 6 7flat5 m7 dim7 m(add9) maj7 7sus4

1 B x x x x

2 B x x x x x

3 B x x x x

4 A x x x x x x x x x x x

5 A x x x x x x x x x

6 B x x x

7 A x x x x x x x x

Note. The only type of chord found in each band is the dominant seventh (7), which is 
indicated in bold font.

Table 7-8 represents each of these bands in terms of their component tetrachord 
types. This table indicates that the only tetrachord type found in every band is the 
dominant seventh. Therefore, the stimulus presented to the network was a 7 chord. 
The two examples of coarse coding illustrated in Tables 7-7 and 7-8 were chosen 
deliberately. We noted earlier that in terms of band contents add9 and 7 chords 
were similar because they are often in the same band. However, the coarse coding 
examples show that there are indeed differences between the two chord types; 
there are some bands where we find one but not the other. This band intersection 
technique takes advantage of this property, which explains how the messy contents 
of the 31 hidden unit bands permit identification of the type of chord presented to 
the extended tetrachord network.

The output units of the extended tetrachord network do not themselves literally 
identify chord types by determining intersections between sets of features captured 
by different hidden unit activities. Instead, the output units operate geometrically: 
hidden unit activities provide coordinates that arrange particular types of tetra-
chords along a plane, and the output units then carve this plane out of the hidden 
unit space (e.g., Figures 6-31 and 6-32). Functionally speaking, however, this geo-
metric process of identifying tetrachord types is equivalent to finding intersections 
between bands. Tetrachord types that belong to the same band will have nearly the 
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same coordinate along one of the dimensions of the hidden unit space. One type 
of tetrachord is separated from the other types in this dimension by being located 
at a different coordinate from the others in one or more of the other dimensions.

7.5 Summary and Implications

Chapter 7 has provided an account of a network trained on a third version of a chord 
classification task, identifying members of a set of extended tetrachords. This task is 
more complicated than those tasks described in Chapter 6 because the training set 
contained a broader variety of chord types. As a result, a more complex multilayer 
perceptron, one that used seven hidden value units, was required for this problem.

Interestingly, when I interpreted this more complex network, we discovered 
some properties that were very similar to those discovered in the networks discussed 
in Chapter 6. In particular, many of this network’s hidden units employed strange 
circles to solve this problem. Recall that a strange circle picks out 1) pitch-classes 
that belong to a particular interval cycle and 2) assigns all of the pitch-classes within 
this subset nearly identical connection weights. In other words, the hidden units 
use interval cycles to define equivalences between different pitches. Hidden Unit 1 
did this with circles of major seconds, Hidden Units 2 and 4 organized inputs using 
circles of minor thirds, Hidden Unit 6 applied circles of tritones, and Hidden Unit 
7 illustrated circles of major thirds. The other two hidden units balanced particular 
subsets of intervals, but not in a way that reflected perfect use of strange circles.

The interpretation of the extended tetrachord network also provided an oppor-
tunity to explore the use of distributed representations. The jittered density plots 
for each hidden unit revealed that different levels of activity in each unit picked out 
a particular subset of input patterns. Musically speaking, each of these subsets was 
very hard to understand. However, by combining the subsets picked out by each 
of the seven hidden units, and looking for the chord types that belonged to each, 
it became clear how the network used this distributed representation to solve the 
extended tetrachord classification problem.

The extended tetrachord network reveals two interesting properties that also 
appeared in Chapter 6. First, its hidden units have a marked tendency to use a 
construct from post-tonal music theory—interval cycles—to classify entities that 
belong to tonal music. Furthermore, it uses these cycles in a strange way, by creating 
equivalence classes so that pitch-classes that belong to the same interval cycle are 
all treated as being the same pitch-class. In other words, rather than using the 12 
pitch-classes that are the foundation of Western music theory (be it tonal or atonal), 
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this network’s hidden units operate in a musical world in which there are fewer than 
12 pitch-classes. This is indeed an alien music theory.

This network also reveals an interesting example of an alternative representa-
tion for musical cognition, the distributed representation. Is it possible that when 
human cognition processes musical stimuli similar coarse codes are employed? 
One way to answer this question would be to explore the kinds of errors made by 
humans when learning to perform chord classification, or when classifying chords 
(post-learning) under additional attentional demands. We could compare these 
to network errors made during learning, or network errors made after particular 
hidden units are ablated from the network. Similar patterns of errors might point 
toward the discovery of a coarse code for human musical cognition.
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Jazz Progression Networks

8.1 The ii-V-I Progression

All of the musical tasks that I have considered in previous chapters ignored the 
element of time. One reason for this, detailed in Chapter 2, was that the network 
architectures that I have explored are designed to recognize spatial, but not tem-
poral, patterns. However, even these sorts of networks can be used to deal with some 
temporal aspects of music. In this chapter, I explore time by training networks on 
sequences of chords. After learning, if a stimulus chord is presented to the network, 
then it responds with the next chord in the sequence.

The chapter begins with an introduction to chord progressions, focusing upon 
one important progression in jazz, the ii-V-I. Various methods are discussed that 
can be used to encode the chords in this progression for network training. I dis-
cover that the type of encoding is an important determinant of how long it takes 
a network to learn this progression. A network is then interpreted to reveal how 
it encodes the probabilistic structure of this progression. The chapter then turns 
to a second progression, the Coltrane changes, which is an elaboration of the 
ii-V-I progression. Various network encodings are explored, and their impact on 
learning is determined. The interpretation of this network relates the Coltrane 
changes to the strange circles that have been discussed in the preceding two 
chapters.

8.1.1 Chord Progressions

The basic element of harmony is the musical interval, the simultaneous presence 
of two tones a specific musical distance apart. Chords generally involve presenting 
more than two tones simultaneously, and therefore involve the presence of several 
musical intervals. Just as the presence of a single tone cannot by itself establish a 
musical key, a triad in isolation cannot establish tonality (Schoenberg, 1969). In order 
for tonality to be established, a succession of triads—or, more generally, a succession 
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of harmonies—must occur. The structure of this succession ensures that one chord 
naturally leads the listener to the next. Such a structured succession of chords is 
called a chord progression or, in jazz, “the changes.” Chord progressions are central 
to the structure of most jazz compositions (Broze & Shanahan, 2013; Sudnow, 1978). 
This chapter explores the properties of networks that learn particular progressions 
from jazz: when presented a chord, the network responds with the next chord in 
the progression.

8.1.2 Basic Changes

Let us begin with succession of chords called the ii-V-I chord progression, which 
is likely the one most commonly encountered in jazz (Levine, 1989). In its typical 
form, this progression involves three different tetrachords, each defined in the same 
musical key; as a result, we can write the ii-V-I progression for each of the 12 differ-
ent major keys in Western music. The three chords in any of these versions of the 
progression are constructed using particular notes in a major scale as their root; 
the scale used defines the key of the progression.

The first tetrachord in the ii-V-I progression is the minor seventh chord con-
structed using the second note of the progression’s major scale. This is the ii chord; 
its Roman numeral is written in lower case because it is minor, and indicates the 
position of this chord’s root in the major scale for the chord’s musical key. For 
instance, the second note in the C major scale is D, so the ii tetrachord for the key 
of C is Dm7, which includes the notes D, F, A, and C.

The second tetrachord in the ii-V-I progression is the dominant seventh tetra-
chord constructed using the fifth note of the progression’s major scale as its root. 
In the C major scale this note is G, so in the key of C the V chord in the progression 
is G7, which uses the notes G, B, D, and F.

The third tetrachord in the ii-V-I progression is the major seventh tetrachord 
constructed using the first note of the progression’s major scale as its root. In the C 
major scale this note is C, so in the key of C the I chord in the progression is Cmaj7, 
which contains the notes C, E, G, and B.

The procedure illustrated above for constructing the three chords in the key of 
C can construct the ii-V-I progression in any other major scale. Table 8-1 provides 
the three chords in this progression for each major key in Western music.
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Table 8-1 The three tetrachords that define the ii-V-I progression for each major key. 

Key Chord

ii V I

A Bm7 E7 Amaj7

A# Cm7 F7 A#maj7

B C#m7 F#7 Bmaj7

C Dm7 G7 Cmaj7

C# D#m7 G#7 C#maj7

D Em7 A7 Dmaj7

D# Fm7 A#7 D#maj7

E F#m7 B7 Emaj7

F Gm7 C7 Fmaj7

F# G#m7 C#7 F#maj7

G Am7 Dm7 Gmaj7

G# A#m7 D#7 G#maj7

Note. Each row provides the three chords in the progression for one musical key. The 
name of the major key is provided in the first column.

8.1.3 The ii-V-I Progression Problem

I am interested in training networks to generate the ii-V-I progression in any key. 
When presented one chord, the network’s task is to generate a representation of the 
next chord in the progression. For example, consider the ii-V-I progression in the key 
of C, which involves the Dmin7, G7, and Cmaj7 chords. I want to train a network so 
that when Dmin7 is presented to its input units it responds with a representation 
of G7 in its output units. Similarly, when G7 is presented to its input units, it will 
generate Cmaj7 in its output units.

I want analogous behaviour from the network for the other 11 possible musical 
keys. Each key involves defining two input/output pairs, one involving the minor 
seventh and the dominant seventh chords, the other involving the dominant sev-
enth and the major seventh chords. I never use a major seventh chord as an input 
pattern; when properly trained the network will never generate a minor seventh 
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chord as a response. The entire training set consists of 24 different input/output 
pattern pairs.

The input and output chords for the ii-V-I progression problem can be encoded in 
a number of different ways. Of particular interest in the current chapter is whether 
the choice of encoding affects the complexity of the network required to learn the 
progression. Before exploring the results of training networks on the ii-V-I progres-
sion problem, let us first discuss the importance of encoding, and how there are 
several different approaches to encoding tetrachords that are worthy of exploration.

8.2 The Importance of Encodings

8.2.1 Readiness-To-Hand

In Being and Time (Heidegger, 1927/1962), philosopher Martin Heidegger proposed 
that part of an agent’s engagement with the world involves using equipment. 
Equipment consists of entities experienced in terms of the potential actions or 
experiences that they make available. Heidegger also argued that a key property 
of equipment was readiness-to-hand. Readiness-to-hand means that equipment 
itself is imperceptible to us when being used; we experience the effects of equip-
ment but not equipment itself. In other words, if we are aware of the existence 
of a tool, then the tool is poorly designed (Dourish, 2001; Norman, 1998, 2002, 
2004). The invisibility of artifacts—the readiness-to-hand of equipment—provides 
evidence of good design.

8.2.2 Solutions by Design

Readiness-to-hand is not only relevant to the design of artifacts but is also import-
ant to theories of problem solving. In cognitive science, problem solving is typically 
described as searching a problem space (Newell & Simon, 1972). The amount of 
time required to search through a problem space to find a route to the problem’s 
solution reflects a problem’s difficulty. The longer the search, the harder the prob-
lem. Crucially, search complexity depends in part upon the manner in which states 
of knowledge about the problem are encoded. If a problem is encoded using one 
representational scheme, then its solution may require a long and difficult search. 
However, if the same problem is encoded in a different format, then its difficulty 
can be drastically reduced. With the proper encoding, a problem’s solution exhibits 
readiness-to-hand: the solution is immediately apparent, and the process of search-
ing for the solution is so trivial that it becomes invisible (Simon, 1969).
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In this context, one theme of the current chapter is to explore artificial neural 
networks for jazz progressions in the context of efficient design. In particular, it is 
possible to use many different encodings of the same musical problem. Even though 
the musical problem remains constant, changing its encoding can make it much 
more difficult—or much easier—for a network to learn.

8.3 Four Encodings of the ii-V-I Problem

In designing a training set for teaching a network the ii-V-I progression, one must 
decide how to represent tetrachords both as stimuli and as responses. Ideally, the 
choice of representation would be “theory neutral” (Pylyshyn, 1984): regardless of 
our choice of representation, the results of training a network on the task would 
be the same. Not surprisingly, though, this ideal situation does not arise: differ-
ent choices of how to represent tetrachords for the network lead to very different 
simulation results.

Let us first describe four plausible methods for representing tetrachords to net-
works that must learn the ii-V-I progression. Later in the chapter, we will present 
results that clearly show that these choices are not theory neutral.

8.3.1 Pitch-Class Encoding

Most of the networks that are described earlier in this book employ a pitch-class 
representation, which is the first kind of encoding to consider for the ii-V-I progres-
sion. This representation only requires 12 units. Each unit represents the presence 
or absence of one of the possible pitch-classes in Western music.

One major advantage of pitch-class representation is its simplicity: a very small 
number of input and output units are required to represent any of the different 
tetrachords that can occur in the progression. A pitch-class representation of the 
ii-V-I problem requires only 12 input units to represent an input tetrachord, and 
the same number of output units to represent the tetrachord response generated 
by the network.

In pitch-class encoding, as we have seen in earlier chapters, a tetrachord stimulus 
is represented by turning on the four input units that represent the chord’s com-
ponent pitch-classes, and by turning all of the other eight input units off. For the 
ii-V-I problem, a network can use the same encoding to represent its tetrachord 
responses in the output units.
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8.3.2 Pitch Encoding

One straightforward way to consider the various chords in a progression is to con-
sider them as being in root position. In root position, all notes in a chord appear 
in their natural positions in the scale to which they belong. For instance, in root 
position the lowest note of a tetrachord is the chord’s root: the lowest note of Dm7 
is D; the lowest note of G7 is G, and so on.

One consequence of having each tetrachord in root position is that there is a 
marked similarity in chord “shape,” which is the spacing between adjacent notes 
in the chord. Tetrachords of the same type (minor seventh, dominant seventh, or 
major seventh) have very similar shape: four notes that are evenly spaced, as they 
are stacked upon each other on the staff.

One can imagine that the input units used for pitch-class encoding are the 
keys of a small piano. Figure 8-1 illustrates the mapping between the input units 
and the piano keyboard. However, this mapping reveals a possible disadvantage 
of pitch-class representation: by adopting this encoding, we lose the similarity of 
shape between different chords of the same type. That is, different spacing between 
notes—different chord inversions—are required to fit tetrachords on this keyboard 
because of its small size.

Figure 8-1 The mapping between input units used for pitch-class encoding and a 
piano keyboard.

A B C D E F G G#F#D#C#A#
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Figure 8-2 illustrates this issue using a keyboard to represent four different minor 
seventh chords that belong to different keys. Each belongs to the ii-V-I progression 
in a particular key. However, to fit each of these chords onto the small keyboard, 
different chord shapes are required. For example, Figure 8-2 shows that Amin7 can 
be fit on this keyboard in root position (the A is the lowest note, which is the leftmost 
note coloured grey in the illustration). In contrast, Cmin7 must be fit using its first 
inversion (C is the second lowest note), Dmin7 must be fit using its second inversion 
(D is the second highest note), and Gmin7 must be fit using its third inversion (G 
is the highest note).

Figure 8-2 The keyboard layout of four different minor seventh tetrachords.

In order to create a representation that preserves tetrachord shape, I must abandon 
the assumption of octave equivalence, and adopt an encoding that explicitly indi-
cates that two different notes (e.g., middle C and the C an octave higher) are distinct 
pitches even though they belong to the same pitch-class. I did this for the first triad 
classification network described in Chapter 6 (see Figure 6-2). Pitch encoding is an 
alternative to pitch-class encoding, and abandons the octave equivalence assump-
tion. In pitch encoding, each input unit represents the presence or absence of a 
particular pitch, and not of a pitch-class, as is shown in Figure 8-3.

In our use of pitch encoding for the ii-V-I problem, the highest key of the pro-
gression is G♯, and the highest note is C♯6 (the highest note in the D♯7 tetrachord 
for this key). Similarly, the lowest key of the progression is A, and as a result the 
lowest note that we used is A3 (the lowest note in the Ama7 tetrachord for this key). 
As a result, our pitch encoding of chords used 29 input units to represent all of the 
pitches from A3 to C♯6.

Cm7 (1st inversion)

Am7 (root)

Gm7 (3rd inversion)

Dm7 (2nd inversion)
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Figure 8-3 The mapping between input units used for pitch encoding and a 
piano keyboard.

8.3.3 Pitch Encoding of Inversions

Pitch encoding can represent tetrachords in root position. However, as soon as 
octave equivalence is abandoned, other versions of the ii-V-I progression problem are 
possible. For instance, a pianist might prefer inversions of the chords that reduce the 
hand and finger movement required when one moves from one chord to the next. 
For example, if one uses the second inversion of every dominant seventh chord in the 
progression, then a “lower action” version of the progression emerges. The second 
inversion of a dominant seventh chord is created by taking the two lowest notes in 
the chord’s root position and raising each an octave. Figure 8-4 provides a version 
of the ii-V-I progression in which each of the dominant seventh chords is inverted.

Figure 8-4 The ii-V-I progression for each possible key.

How does inverting the middle chord of the ii-V-I progression enable lower 
action movement for a pianist? Figure 8-5 illustrates voice leading—that is, finger 
movements from one chord to the next—for the ii-V-I progression in the key of C 

A3 B3 C3 D4 E4 F4 G4 G#4F#4D#4C#4A#3 A4 B4 C5 D5 E5 F5 G5 G#5F#5D#5C#5A#4
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to shed light on this issue. The top three keyboards in Figure 8-5 illustrate voice 
leading when the dominant seventh chord is in root position. The arrows indicate 
finger movements from chord to chord. Note that because the middle chord is in 
root position, substantial movement from chord to chord is required: each finger 
moves to a different key to play the next chord, and the hand must move up and 
then back down along the keyboard.

Figure 8-5 Voice leading for two versions of the ii-V-I progression.

Dm7

G7

Cmaj7

Dm7

G7
(inverted)

Cmaj7
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The lower half of Figure 8-5 shows that if the middle chord is played in second 
inversion form, much less movement is required. The hand stays at the same pos-
ition along the keyboard, and moving from one chord to the next only requires 
changing the position of two fingers. Two fingers press the same keys in succes-
sive chords for this version of the progression! In short, an alternative approach to 
encoding the ii-V-I progression problem is to use pitch encoding, but also to take 
advantage of its flexibility by presenting dominant seventh chords in their second 
inversion form. One consequence of this is that slightly fewer processing units are 
required; all of the tetrachords can be encoded using 24 input units, with the lowest 
unit representing A3 and the highest unit representing G♯5.

8.3.4 Lead Sheet Encoding

All of the encodings described above represent each pitch-class or each pitch in a 
tetrachord. As a result, all involve activating four processing units and turning all 
of the remaining processors off. However, there are many other ways to represent 
tetrachords, and some of these representations are not concerned with detailing 
each note in a chord. For instance, one popular approach to teaching adults how 
to play piano (Houston, 2004) attempts to simplify music reading by eliminating 
traditional musical notation of chords. Instead, chords are represented in lead sheet 
notation: they are written as a combination of the name of one note (to provide 
the chord’s root) and some additional symbols that indicate the type of chord. For 
instance if one uses lead sheet notation for the ii-V-I progression in the key of C, 
the chords are merely written as “Dm7,” “G7,” and “Cmaj7.”

Figure 8-6 Lead sheet encoding of tetrachords.

A lead sheet encoding can be easily created for an artificial neural network that 
is to learn the ii-V-I progression. This encoding is very simple, and only requires 
15 processors, as is illustrated in Figure 8-6. Three of these processors indicate a 
chord’s type, where only three chord types (m7, 7, maj7) are required in the ii-V-I 

A A# B
m7

dom7
maj7 C C# D D# E F F# G G#

Chord type Root of chord
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progression problem. The remaining 12 processors represent the chord’s root pitch 
using pitch-class encoding. For example, Figure 8-6 demonstrates how one can 
represent the Dm7 tetrachord by only activating two units: the unit that represents 
that the chord is a minor seventh and the unit that indicates that the chord’s root 
is the pitch-class D.

8.3.5 Implications

The sections above have discussed four different methods for encoding stimuli (and 
responses) for the ii-V-I progression problem. With these possible encodings of the 
ii-V-I progression described, we can now investigate the effect of problem encoding 
on network learning. Does problem representation affect network complexity? Does 
problem encoding alter the amount of training required for a network to solve the 
ii-V-I progression problem?

8.4 Complexity, Encoding, and Training Time

Figure 8-7 A perceptron trained on the ii-V-I progression task.

A A# B C C# D D# E F F# G G#

A A# B C C# D D# E F F# G G#

Output : pitch-classes de�ning next chord in progression

Input: pitch-classes de�ning current chord in progression
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8.4.1 Task

All of the networks described in this section of this chapter learn the ii-V-I progres-
sion problem using one of the encodings discussed in Section 8.4. The question of 
interest concerns the effect of the various encodings: Does one encoding require a 
more complex network, or a greater amount of training, than another?

8.4.2 Network Architecture

In order to explore the effect of different encodings of the ii-V-I problem, pilot 
studies determine the simplest network capable of solving the problem for any 
of the encodings. Many of the musical networks reported in earlier chapters used 
value units. One reason for this is that value unit networks generally are easier to 
interpret. However, pilot studies indicate that networks of value units are chal-
lenged by the pitch-class encoding of the ii-V-I problem. A value unit perceptron 
could not learn this version of the problem; a multilayer network perceptron that 
had seven hidden value units was required. All three other encodings are learned 
by a value unit perceptron. However, all four encodings of the ii-V-I problem are 
also learned by perceptrons whose output units are integration devices that use the 
sigmoid-shaped logistic activation function. For the remainder of Section 8.4 we will 
consider how perceptrons that use integration devices as output units fare with the 
different encodings of the ii-V-I problem. Figure 8-7 illustrates one such network.

8.4.3 Training

All of the networks described below are trained with a gradient descent rule using 
the Rosenblatt program (Dawson, 2005). Each network is a perceptron whose output 
units use the logistic activation function. The only difference between a perceptron 
trained on one encoding of the ii-V-I progression problem and a perceptron trained 
on another encoding of this problem is the number of input and output units in 
the network. Perceptrons trained on a pitch-class encoding required 12 input and 
12 output units. Perceptrons trained on a pitch encoding of non-inverted chords 
required 29 input and 29 output units. Perceptrons trained on a pitch encoding of 
inverted chords required 24 input and 24 output units. Perceptrons trained on a lead 
sheet encoding of the problem required 15 input and 15 output units.

When I train any perceptron on the ii-V-I progression problem, the learning 
rate is 0.50, and connection weights are randomly initialized to values in the range 
from −0.1 to 0.1. All output unit biases (θ) are set to zero, and do not change during 
learning. A network learns until it converges on a solution to the problem, where (as 
in previous chapters) convergence is defined as generating a hit for every output unit 
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on every training pattern. As will be seen below, an integration device perceptron 
can learn any encoding of the ii-V-I problem very quickly.

8.4.4 Effect of Encoding

An integration device perceptron can learn each of the four encodings of the ii-V-I 
progression problem. As a result, none of the encodings makes this problem so 
complex that a more complicated network is required to solve it. However, there 
are definite effects of encoding on the amount of training that is required before a 
network converges on a solution. To explore these effects, one can train 20 different 
“subjects”—different networks—on each encoding of the ii-V-I progression problem. 
In this small experiment, the independent variable is the encoding of the problem 
and the dependent variable is the number of epochs of training required before the 
network converges. Table 8-2 provides the average number of epochs required (with 
standard deviations) for each of the four encoding conditions in this experiment.

Table 8-2 The mean number of sweeps required for a network to converge (with 
standard deviations) for perceptrons trained using four different encodings of the ii-V-I 
progression problem.

Type of input encoding

Pitch-class Pitch (no inversion) Pitch (inversion) Lead sheet

Mean 726.75 929.55 256.20 118.05

SD 1.02 2.14 2.02 0.22

Welch two-sample t-tests reveal that the difference between any pair of means in 
Table 8-2 is significant with p < 0.001. The smallest value of t is for the comparison 
between the means for the pitch encoding of inverted chords and the lead sheet 
encoding (t = 304.63, df = 19.47). The largest value of t is for the comparison between 
the pitch encoding of non-inverted chords and the lead sheet encoding (t = 1687.28, 
df = 19.42). In short, choice of encoding has a significant effect on the amount of 
training required for networks to converge. Pitch encoding of non-inverted chords 
results in the slowest learning; this suggests that pitch encoding provides the most 
complicated representation of the problem. If this encoding changes to pitch-class 
encoding, then a significant speeding up of learning occurs. One can produce 
another significant speeding up of learning by replacing pitch-class encoding with 
pitch encoding of inverted chords. Finally, another significant improvement in 
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amount of training occurs when we use lead sheet encoding is used. Networks 
learn the lead sheet encoding of the problem with slightly less than one eighth of the 
amount of training required when pitch encoding of non-inverted chords is used.

8.5 Interpreting a Pitch-Class Perceptron

8.5.1 Integration Device Activity

Many of the networks that we have considered in earlier chapters used value units, 
which employ the Gaussian activation function. The simulations described in Sec-
tion 8.4 revealed that perceptrons whose output units are integration devices are 
able to solve the ii-V-I progression problem. An integration device converts net input 
into activity using the sigmoid-shaped logistic function. Let us take a moment to 
consider the general properties of an integration device, and then use these prop-
erties to help interpret the internal structure of one of the perceptrons discussed 
in Section 8.4.

When the goal of a simulation is to interpret the internal structure of a network, 
value units have certain advantages. The Gaussian activation function responds to 
a particular subset of input properties. We have seen in earlier chapters that one 
can identify these properties by determining what input signals cancel out a value 
unit’s µ, causing it to turn on.

In contrast, integration devices do not detect specific features that cause them 
to activate. Instead, they serve as devices that weigh evidence. Every signal coming 
into an integration device is either evidence in favour of turning on or evidence in 
favour of turning off. The activity of an integration device reflects the net effect of all 
of the accumulated evidence. It does not turn on when specific features are present. 
Instead, it turns on when enough positive evidence has accumulated.

There are two different perspectives for considering the meaning of an integra-
tion device’s activity. The first is the digital perspective. We ordinarily train output 
integration devices either to turn on or to turn off. This requires the net input to 
an integration device either to be sufficiently high or to be sufficiently small. When 
the bias (θ) of an integration device is zero, as is the case for all of the Section 8.4 
perceptrons, its net input must be 2.20 or higher in order for it to turn on (i.e., to 
generate activity of 0.90 or higher). If θ is zero, then turning an integration device 
off (i.e., to generate activity of 0.10 or less) requires a net input that is −2.20 or lower.

While training typically leads us to consider integration devices as being digital 
(i.e., as turning either on or off), we are not limited to the digital perspective. The 
continuous value of an integration device’s activity ranges between zero and one, and 
is highly informative. In particular, an integration device’s activity can be interpreted 
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as a conditional probability (Dawson & Dupuis, 2012; Dawson et al., 2009; Dawson & 
Gupta, 2017; McClelland, 1998). Thus a second, analogue, perspective on interpreting 
integration device activity involves viewing activity as representing probability.

For instance, when an output integration device generates activity of 0.70, this 
means that there is a 70% chance that it will be “rewarded” given the current set 
of cues that have been presented to the input units (Dawson et al., 2009; Dawson 
& Gupta, 2017). We will see below that interpreting integration device networks 
benefits from considering such networks from the digital viewpoint as well as from 
the probabilistic perspective.

8.5.2 Network Interpretation

Let us consider the perceptron that solves the ii-V-I progression problem when 
pitch-class encoding of inputs and outputs is employed (Figure 8-7). This network’s 
knowledge of the ii-V-I progression is stored in its connection weights. Figure 8-8 
illustrates the connection weights from the 12 input units to a single output unit, the 
one that represents the pitch-class A. This pattern of connection weights is present 
for each output unit. The only difference between output units is that the bars are 
systematically assigned different pitch-class labels. For instance, the connection 
weights for the A♯ output unit can be plotted using exactly the same graph as Figure 
8-8, but with different labels. For the A♯ output unit, the leftmost bar is associated 
with G♯ (instead of A), and the remaining bars are labelled A, A♯, B, and so on up 
to G. This implies that if we can explain the Figure 8-8 weights, then a functionally 
equivalent explanation applies to each of the other 11 output units.

Figure 8-8 The connection weights from the 12 input units to the output unit 
representing the pitch-class A.

-5

-10

0

5

10

 
 

 
 

 

A

A#

B

C

C#

D

D#

E

F
F#

G

G#



doi: 10.15215/aupress/9781771992206.01

224 Connectionist Representations of Tonal Music

In previous chapters graphs of the connection weights that fed into value units 
revealed particular musical properties. The connection weights illustrated in Figure 
8-8 feed into an integration device but do not reveal any obvious musical pattern. 
How then are these weights systematically used to turn the A output unit on when 
needed in the ii-V-I progression problem?

Let us first consider the A output unit from the digital perspective. What proper-
ties cause this unit to turn on? The ii-V-I progression problem consists of 24 different 
input tetrachords. Of these 24 patterns, eight cause the A unit to turn on, while the 
remaining 16 cause it to turn off.

Table 8-3 The eight patterns in the ii-V-I training set that cause the A output unit to 
activate when signals are sent through the weights illustrated in Figure 8-8.

Chord Component pitch-classes Net input

Am7 A, C, E, G 15.09

C7 A#, C, E, G 9.97

A7 A, C#, E, G 9.05

Em7 B, D, E, G 6.94

Cm7 A#, C, D#, G 2.82

F#m7 A, C#, E, F# 2.31

E7 B, D, E, G# 2.20

F7 A, C, D#, F 2.20

Note. Each row provides information about a particular chord. The first column names the 
chord, the next column provides the pitch-classes that make up the chord, and the final 
column provides the net input sent to the output unit when the chord is presented to the 
network.

Table 8-3 provides the features of the eight input patterns that turn the A output 
unit on. For each pattern, it provides the name of the input chord, the chord’s four 
component pitch-classes, and the net input for the A output unit that is associated 
with each of these chords. The net input is simply the sum of the four weights 
associated with a chord’s four input pitch-classes.

Not surprisingly, the net input column of Table 8-3 consists of values that are 
greater than or equal to 2.20, which is the net input required for an integration 
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device to produce activity of at least 0.90 when θ = 0. This suggests that each of these 
eight input chords are associated with four different connection weights whose sum 
is sufficient to activate the A output unit.

An inspection of the component pitch-classes in Table 8-3 provides an indication 
of why each of its rows is associated with high net inputs. For instance, six of these 
eight input patterns include the pitch-class E, which has the highest connection 
weight value by far in Figure 8-8. The two chords that do not include E (Cm7 and 
F7) include some combination of the pitch-classes A, D♯, and G, which are the other 
three connection weights with positive values.

In short, one account of the connection weights in Figure 8-8 is essentially com-
binatorial. The pitch-class input units are assigned these weights because 1) the 
values of the included weights produce high enough net input for the eight chords 
that turn the A input unit on, and 2) the values of the other weights produce low 
enough net input (−2.20 or lower) for the 16 chords that turn this output unit off.

Of the 12 connection weights depicted in Figure 8-8, eight are negative. Signals 
sent through a negative weight will decrease the A unit’s activity. Is it the case that 
because of this some of the pitch-classes associated with negative weights are absent 
from Table 8-3? An inspection of the table indicates that this is not so. All 12 input 
pitch-classes appear at least once, although some (in particular A, C, E, and G) occur 
more frequently than the others. This suggests that the individual weights in Figure 
8-8 might have more to do with the output unit from a probabilistic perspective. 
Perhaps strongly positive weights are not associated with pitch-classes that defin-
itely turn the output unit on, but are instead associated with pitch-classes that are 
probably on when the output unit turns on.

To explore this possibility, let us consider the probability structure of the ii-V-I 
progression problem in the context of the A output unit. There are 24 different input 
patterns in this problem; eight of them cause the A output unit to turn on and 16 
cause the A output unit to turn off.

Table 8-4 provides the number of times that each input pitch-class belongs to a 
pattern that turns the A output unit either on or off. For instance, the first row of 
Table 8-4 indicates that four of the input patterns that cause the A output unit to 
turn on include the input pitch-class A. Similarly, the first row indicates that four 
of the input patterns that cause the A output unit to turn off also include the input 
pitch-class A.

Table 8-4 also includes a “Conditional Probability” column. This column indi-
cates the probability that a particular input pitch-class unit is on if one knows that 
the input chord turns the A output unit on. Thus, in the first row of the table, the 
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conditional probability is P (Output A = 1|Input A = 1). This value is equal to 0.5 for 
the input pitch-class A because only four of the eight input patterns that include 
this pitch-class are associated with the A output unit turning on. Similarly, the 
conditional probability for input pitch-class A♯ is equal to 0.25. This is because only 
two of the eight input patterns that include this pitch-class are associated with the 
A output unit turning on.

Armed with a contingency table like Table 8-4, one would typically perform 
additional computations using Bayes’ theorem to determine the conditional prob-
ability that the A output unit is on when a particular input pitch-class is used 
(e.g., we would compute P (Output A = 1|Input A = 1)). However, for this particular 
contingency table this probability is identical to the probability reported in the 
“Conditional Probability” column of the table.

With this knowledge of the probabilities of the ii-V-I problem, we can now 
explore network structure from a probabilistic perspective. Table 8-4 includes the 
weight of the connection between each input pitch-class unit and the A output 
unit. An inspection of these weights indicates that they seem related to the con-
ditional probabilities in the table. That is, negative weights tend to be associated 
with lower probabilities, while positive weights tend to be associated with higher 
probabilities. The correlation between Table 8-4’s “Conditional Probability” column 
and its column of connection weights is very high (r = 0.820).

As noted earlier, the “Conditional Probability” column in Table 8-4 can be 
interpreted as providing the probability that the A output unit is on given that 
a particular pitch-class input unit is turned on. The logistic activation function 
can also be used to estimate this probability. This is accomplished by sending a 
signal from only one input unit at a time into the output unit and examining the 
output unit’s response. (This is equivalent to computing the logistic function with 
the input unit’s weight as input, assuming that θ = 0). The last column in Table 
8-4 provides these probability estimates, which are even more strongly correlated 
with the “Conditional Probability” column than are the connection weights (r = 
0.898). Clearly, the connection weights from Figure 8-8 encode the probability 
structure of the ii-V-I progression problem. In general, the more likely it is for 
an input unit to be involved in turning on an output unit, the larger will be the 
connection weight between the two.

However, while this story accounts for most of the network’s structure, it is 
incomplete. This is why the correlations reported above are not perfect. Connection 
weights also have values that permit the network to deal with special cases.
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Table 8-4 The probability structure of the ii-V-I progression problem in the context of 
the A output unit whose connection weights were presented in Figure 8-8.

Input pitch-
class

Output A:  
On

Output A:  
Off

Conditional 
probability

Weight Logistic of 
weight

A 4 4 0.5 2.81 0.94

A# 2 6 0.25 −2.31 0.09

B 2 6 0.25 −3.86 0.02

C 4 4 0.5 −0.15 0.46

C# 2 6 0.25 −6.19 0.00

D 2 6 0.25 −1.64 0.16

D# 2 6 0.25 2.81 0.94

E 6 2 0.75 9.97 1.00

F 1 7 0.125 −3.27 0.04

F# 1 7 0.125 −4.28 0.01

G 5 3 0.625 2.47 0.92

G# 1 7 0.125 −2.27 0.09

Note. Each row provides the structure related to a single input unit. The first column 
names the input unit. The second column indicates the number of patterns for which 
the input unit is on and the output unit for A is on, while the third column indicates the 
number of patterns for which the input unit is on and the output unit for A is off. The 
fourth column converts the preceding two columns into a conditional probability. The 
fifth column provides the weight between the input unit and the A output unit, while the 
sixth column converts that weight into activity using the logistic activation function.

For instance, consider the input unit that represents D♯. This input unit has a 
healthy positive connection to the output unit for A, even though D♯ has a low 
probability of turning A on (see Table 8-4). Given this low probability, why is this 
connection weight so strong?

The reason is the role of D♯ in the context of the three other pitch-classes that 
are also present to form a tetrachord. D♯ is present in six different chords that do 
not turn the A output unit on. For these six chords, D♯’s healthy positive weight 
is not an issue. This is because the other three pitch-classes in each chord have 
strong negative weights (producing, on average, a net input of −7.82). This is more 
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than enough to cancel out the positive signal of D♯ and turn the A output off. For 
the two chords in which D♯ is present and the A output turns on, the other three 
pitch-classes are not positive enough (average net input = −0.30). The positive weight 
of D♯ is required to turn the A output unit on in these cases. D♯ has been assigned 
its strong weight to deal with these two cases.

In other words, the perceptron has learned weights that reflect the overall 
probability structure of the ii-V-I problem (a structure that simply considers the 
relationship between each input unit and an output unit without considering other 
input units). However, it then adjusts these weights so that the network generates 
the correct response in particular contexts (i.e., particular combinations of input 
signals) that would lead to incorrect responses if probability structure were the 
only consideration.

8.5.3 The Tonal Hierarchy

The tonal hierarchy is a key finding from Carol Krumhansl’s research on music cog-
nition (Krumhansl, 1990a), and played an important role in some of the key-finding 
perceptrons discussed earlier in Chapter 5. The tonal hierarchy reflects the differing 
importance of the various pitch-classes in the context of a particular musical key. 
For example, in the key of A major the tonic (the pitch-class A) receives the highest 
rating. The next highest ratings are given to the third or fifth positions of A major (the 
pitch-classes C♯ and E). The next lowest ratings are provided to the remaining four 
pitch-classes of the scale (for A major these are the pitch-classes B, D, F♯, and G♯).

The weights illustrated in Figure 8-8 also reflect the differing importance of vari-
ous pitch-classes in a different context: in this figure, the context is the likelihood 
of activating the A output unit. This suggests that Figure 8-8 could be interpreted 
in a fashion similar to Krumhansl’s (1990a) tonal hierarchy. What is the relationship 
between the tonal hierarchy and the weights illustrated in Figure 8-8? To answer this 
question, the correlation between the Figure 8-8 weights and the tonal hierarchy for 
each major key was computed. The results are presented in Table 8-5.

Table 8-5 reveals a definite relationship between Krumhansl’s (1990a) tonal 
hierarchy and the Figure 8-8 weights. In particular, there is a very high correlation 
between the weights and the tonal hierarchy for the key of E major, which is a perfect 
fifth away from A. A smaller, but still healthy, correlation exists between the weights 
and the tonal hierarchy for the key of A major. Recall that the weights illustrated 
in Figure 8-8 are found for all of the output units in the Figure 8-7 perceptron, but 
are associated with different input units. As a result, the pattern of correlations 
reported in Table 8-5 is found for the connection weights that feed into the other 
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11 output units. The general finding for each output unit is a very high correlation 
with the tonal hierarchy a perfect fifth away from the output unit’s pitch-class, and a 
high correlation with the tonal hierarchy that matches the output unit’s pitch-class.

Table 8-5 The correlations between each of Krumhansl’s tonal hierarchies for 
major keys and the connection weights illustrated in Figure 8-8.

Major key of  
tonal hierarchy

Correlation between tonal  
hierarchy and Output A weights

A 0.41

A# −0.32

B 0.29

C −0.09

C# −0.32

D 0.06

D# −0.10

E 0.73

F −0.46

F# −0.29

G 0.16

G# −0.06

On the one hand, the relationship discovered between connection weights and the 
tonal hierarchy is surprising. The perceptron learns a problem that is quite different 
from the typical probe tone method. It is surprising, though satisfying, to see strong 
similarities to tonal hierarchies emerge from this network’s internal structure.

On the other hand, the particular relationships revealed in Table 8-5 make per-
fect sense in the context of the probabilities provided in Table 8-4. For instance, 
the pitch-class that is most likely to be involved in turning the A output unit on is 
E. The probability relationships of Table 8-4 emerge quite naturally from the tonal 
hierarchy, given that the chords in the ii-V-I progression problem are all defined 
in particular major keys. Furthermore, within each major key all three chords (the 
minor seventh, the dominant seventh, and the major seventh) include pitch-classes 
that are a perfect fifth apart. Nevertheless, while the connection weights in Figure 



doi: 10.15215/aupress/9781771992206.01

230 Connectionist Representations of Tonal Music

8-8 strongly relate to the tonal hierarchy for E major, they are not perfectly correl-
ated. How might differences between the two be reflected in musical structure?

Tonal hierarchies have been used to explore spatial relationships between dif-
ferent musical keys. One computes the similarity between two different keys by 
calculating the correlation between their respective tonal hierarchies. One then 
uses MDS to produce a map in which similar keys are closer to one another than 
are dissimilar keys (Krumhansl, 1990a; Krumhansl & Kessler, 1982). Krumhansl and 
Kessler found that this analysis arranges major keys in a map according to the circle 
of perfect fifths.

A similar analysis can be performed on the connection weights of the ii-V-I 
perceptron by comparing the similarities of the connection weights that feed into 
different output units. The correlations between each possible pair of sets of 12 
connection weights are computed, and MDS is performed on this similarity data. 
This analysis arranges output units in a map; output units that have similar con-
nection weight structures will be located close to one another. Figure 8-9 presents 
the two-dimensional solution when MDS is performed on connection weight sim-
ilarities. This solution accounts for 28.92% of the variance in the original distances, 
which is a statistically significant fit (F = 26.034, df = 1, 64, p < 0.001). Unlike the tonal 
hierarchy analyses (Krumhansl & Kessler, 1982), this MDS solution does not arrange 
output units according to the circle of perfect fifths. Instead, two other organiza-
tional principles emerge. First, output units that represent pitch-classes a tritone 
away (e.g., B and F, A♯, and E) fall at nearly the same location in the map. Second, 
these pairs of tritones are near other pairs that are a semitone away. For instance, the 
nearest neighbours to the F-B pair are the F♯-C pair and the A♯-E pair, each of which 
contains a pitch-class that is either a semitone higher or lower than either F or B.

The two-dimensional MDS solution in Figure 8-9 reveals some intriguing 
regularities. However, an analysis that takes out more than two dimensions pro-
vides a better fit to the data. Figure 8-10 illustrates the first three dimensions of a 
five-dimensional solution for the output unit similarities. This solution accounts for 
87.90% of the variance in the original distance data, which is a statistically significant 
fit (F = 464.97, df = 1, 64, p < 0.001).

Figure 8-10 indicates that the third dimension of this solution pulls the tritone 
pairs vertically apart from one another in the space. However, it is still clear that in 
this higher-dimensional solution pitch-classes a tritone apart are still located near 
one another in the space. The arrangement of points in Figure 8-10 corresponds 
quite nicely to the solution plotted in Figure 8-9. In fact, Figure 8-9 depicts what 
would be seen if one looked down on Figure 8-10 from above.
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Figure 8-9 The two-dimensional MDS solution from the analysis of the 
similarities between output unit weights.

Figure 8-10 The first three dimensions of a five-dimensional MDS solution for the 
analysis of output unit weight similarities.

Y

X

●

●
●

●

●
●

●

●
●

●

●
●

−5 0 5

−6

−4

−2

0

2

4

6
BF

C

A

A#

C# D

D#

E

F#

G G#

−10  −5 0  5 10
−8

−6

−4

−2

0

2

4

6

8

−8
−6

−4
−2

 0
2

4
6

8

X

Y

Z

C

A#

BC#

D

E

F
F#

G

G#

A

D#



doi: 10.15215/aupress/9781771992206.01

232 Connectionist Representations of Tonal Music

Why might tritone structure emerge from the ii-V-I progression problem? One 
answer to this question may be that the ii-V-I progression requires dominant sev-
enth chords; these chords in turn make jazz’s tritone substitution possible. Jazz 
uses chord substitutions to provide musical variety to the changes. In chord sub-
stitutions, one replaces a chord in a progression with another, musically related, 
chord. In tritone substitution, a dominant seventh chord in one key is replaced 
with the dominant seventh chord from a key that is a tritone away. For example, 
the ii-V-I progression in the key of A major uses the E7 chord. Under tritone sub-
stitution, it is replaced with A♯7.

Tritone substitution is possible because dominant seventh chords a tritone 
apart contain the same tritone. That is, they include the same two pitch-classes 
that are a tritone apart. This makes the two chords harmonically similar and per-
mits them to be substituted for one another (Tymoczko, 2008). This harmonic 
similarity might also be the source for the tritone regularities in Figures 8-9 and 
8-10. Even though the ii-V-I progression problem is not defined using tritone sub-
stitution, all of the possible dominant seventh chords are used. Their harmonic 
similarities—or the possibility of tritone substitution—are reflected in the struc-
ture of the two MDS solutions.

This suggests that it might be interesting to explore elaborations of the ii-V-I 
progression problem. For instance, one could define a version that explicitly defines 
tritone substitution in the training set. Would such a network exhibit similar struc-
ture to the one that we have been analyzing? Another kind of elaboration of the 
ii-V-I is a chord progression known as the Coltrane changes. Though related to the 
ii-V-I, the Coltrane changes are notoriously difficult to play. Can a network learn the 
Coltrane changes, using the various encodings introduced earlier in the chapter? If 
so, does the increased complexity of the Coltrane changes require us to use a more 
complicated network?

8.6 The Coltrane Changes

8.6.1 Extending the ii-V-I

The ii-V-I progression plays a dominant role in jazz. Shanahan and Broze compiled 
a corpus of 1200 jazz standards from published lead sheets (Broze & Shanahan, 
2013; Shanahan & Broze, 2012). They analyzed this corpus to identify the five most 
common three-chord progressions in the lead sheets. The ii-V-I was by far the most 
prevalent, accounting for over 42% 0f the 7366 instances of these sequences.
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Consider one jazz standard that employs the ii-V-I, “Tune Up.” It famously 
appeared on the album Blue Haze recorded by Miles Davis for the Prestige label in 
sessions that took place in 1953 and 1954. Davis is credited as being the composer 
of “Tune Up” on this album, but it was actually composed by Eddie “Cleanhead” 
Vinson. Vinson was a prominent blues singer, saxophonist, and bandleader (Nisen-
son, 2000). Vinson, Davis, and “Tune Up” are all linked to another seminal jazz 
figure, saxophonist and composer John Coltrane. Coltrane was a member of Vin-
son’s band in 1948. Coltrane also belonged to the Miles Davis Quintet between the 
years 1955 and 1957, as well as between 1958 and 1960 (Porter, 1998; Thomas, 1975). 
While in the Davis quintet, Coltrane was involved in performances and recordings 
of “Tune Up” (DeVito & Porter, 2008).

While jazz is founded on core harmonic patterns such as basic chord progressions, 
it always pushes this core in new directions. Coltrane was a master of this pursuit. 
His instructor at the Granoff School in Philadelphia, Dennis Sandole, reported 
that he and Coltrane investigated many advanced harmonic concepts that served 
as the foundation for Coltrane’s landmark compositions (Demsey, 1991). Some of 
Coltrane’s harmonic experiments led to a jazz progression now known as the Col-
trane changes. This progression was unveiled in his influential 1960 album Giant 
Steps, where it appears in two famous pieces, “Giant Steps” and “Countdown.” The 
Coltrane changes also appear in several other pieces that Coltrane composed around 
this time (Demsey, 1991). The title “Countdown” pays homage to the Vinson–Davis 
classic “Tune Up”; Demsey shows that the harmonic structure of “Countdown” is 
systematically linked to that of “Tune Up.” Indeed, the structure of Coltrane’s chan-
ges can be explained as a particular elaboration of the ii-V-I progression (Demsey, 
1991). The Coltrane changes add four new chords to the ii-V-I progression. Two of 
these added chords serve as lead-ins to the V chord in the ii-V-I, while the other two 
added chords are lead-ins to the I chord in the ii-V-I.

Importantly, the relationship between the roots of the V chord and its two 
lead-ins is a musical interval of a major third; the same relationship holds among 
the roots of the I chord and its two lead-ins (Demsey, 1991). The circle of perfect 
fifths and the four circles of major thirds can be used to create a map of the Coltrane 
changes chord roots for any key. Figure 8-11 provides this map. The inner circle of 
pitch-classes in this figure is organized around the circle of perfect fifths. Each of 
these pitch-classes is then attached to a circle of major thirds, which forms the 
outer ring of pitch-classes. These circles of major thirds provide the roots of the 
lead-in chords.
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Figure 8-11 A map of the Coltrane changes’ chord roots created by combining 
the circle of perfect fifths (the inner ring of pitch-classes) with the circles of major 
thirds.

To illustrate the use of this map, consider the Coltrane changes for the key of 
C major. The ii-V-I progression for C major is Dmin7-G7-Cmaj7. The Coltrane 
changes elaborate this sequence by adding two lead-in chords for G7 and two 
lead-in chords for Cmaj7. Figure 8-12 presents the part of Figure 8-11 used for the 
key of C major, naming each chord and providing the order in which they are 
played. From Figure 8-12 one can see that the Coltrane changes for C major are 
Dmin7-D♯7-G♯maj7-B7-Emaj7-G7-Cmaj7. Note that this progression begins with 
the first chord of the ii-V-I, and it ends with the ii-V-I’s final two chords.

Figure 8-12 The portion of the Figure 8-11 map that provides the Coltrane 
changes for the key of C major.
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Figure 8-11 can be used to determine the seven chords of the Coltrane changes for 
any major key; one simply finds the key’s root in the inner circle and builds a version 
of Figure 8-12 up from this root. Table 8-6 provides the complete set of Coltrane 
changes, each of which was determined by applying this method for each of the 12 
major keys. Note that the ii, V, and I columns of Table 8-6 also provide the ii-V-I 
progression for these major keys.

Table 8-6 The Coltrane changes for each major musical key.

Major  
key

Chord

ii
1st lead-in 

for V
1st lead-in 

for I
2nd lead-in 

for V
2nd lead-in 

for I V I

A Bm7 C7 Fmaj7 G#7 C#maj7 E7 Amaj7

A# Cm7 C#7 F#maj7 A7 Dmaj7 F7 A#maj7

B C#m7 D7 Gmaj7 A#7 D#maj7 F#7 Bmaj7

C Dm7 D#7 G#maj7 B7 Emaj7 G7 Cmaj7

C# D#m7 E7 Amaj7 C7 Fmaj7 G#7 C#maj7

D Em7 F7 A#maj7 C#7 F#maj7 A7 Dmaj7

D# Fm7 F#7 Bmaj7 D7 Gmaj7 A#7 D#maj7

E F#m7 G7 Cmaj7 D#7 G#maj7 B7 Emaj7

F Gm7 G#7 C#maj7 E7 Amaj7 C7 Fmaj7

F# G#m7 A7 Dmaj7 F7 A#maj7 C#7 F#maj7

G Am7 A#7 D#maj7 F#7 Bmaj7 D7 Gmaj7

G# A#m7 B7 Emaj7 G7 Cmaj7 D#7 G#maj7

Note. Each row provides the sequence of chords that define this progression for a 
particular musical key; the column labels indicate the role of each chord.

8.6.2 The Coltrane Changes Problem

With Table 8-6 in hand, I can now define a new chord progression problem using 
the Coltrane changes. As was the case with the earlier simulations using the ii-V-I 
chords, I present one chord from the progression to a network, and it generates the 
next chord in the progression. This requires six input/output pairs for any major key. 
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The problem involves learning these chord pairings for each major key, producing a 
training set composed of 72 different patterns (six for each major key).

8.6.3 Encodings

As was the case in our study of the ii-V-I progression problem, we can explore 
a number of different encodings for the Coltrane changes problem: pitch-class, 
pitch without inversions, pitch with inversions, and lead sheet. Interestingly, the 
structure of the Coltrane changes produces some challenges for some encodings 
that were not present when the simpler ii-V-I problem was encoded. For instance, 
consider some additional design decisions that are required when pitch encoding 
without inversions is used. Unlike the ii-V-I progression, the Coltrane changes can 
cover a very wide piano keyboard. The number of input units that are required to 
represent this width depends on where various chords are started on the keyboard. 
This must be considered because the same chord can occur on different places in 
the keyboard depending on the musical key in which the changes are being defined. 
This issue is addressed by stipulating that every tetrachord in the training set has 
at least one pitch present in the first octave of a piano keyboard. That is, one can 
shift every chord down the keyboard so that its lowest note is in the range from 
A3 (the A below middle C) to G♯4 (the G♯ above middle C). Using this encoding, 
the non-inverted forms of all of the chords used in the Coltrane changes require 
23 input units. The lowest input unit corresponds to A3, and the highest input 
unit corresponds to G5.

A different complication arises when encoding the Coltrane changes using pitch 
representations of chord inversions. There are two basic issues: First, what chord 
inversions should be used, and second, where should they be placed on the repre-
sented keyboard? Using voice leading as a guide to choice of inversions, I selected 
the set of chord forms that are summarized in Table 8-7. I then used two different 
methods to place the chords on the “keyboard,” producing two different versions 
of training sets. In the first, I defined the chord patterns for the lowest major key 
on the keyboard. Then I shifted this set of chord patterns up the keyboard to define 
the Coltrane changes for all of the other major keys. This requires 23 input units to 
represent any input/output pairing. In this representation the lowest pitch repre-
sented is A3 (the A below middle C) and the highest is G♯4 (the G♯ above middle C). 
This choice of encoding means, unlike the encoding of non-inverted chords, that 
the same chord is represented in different octaves. However, all of these different 
representations of the same chord involve representing the chord in a different form 
(i.e., a different inversion). In the second method, I used the same method used for 
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the pitch encoding of non-inverted chords: every chord was shifted downward so 
that at least one note belongs to the lowest octave of the input pitches.

Table 8-7 The various chord forms used to achieve efficient voice leading for the 
Coltrane Changes.

Chord Chord form

ii First inversion

First lead-in for V Root position

First lead-in for I Second inversion

Second lead-in for V First inversion

Second lead-in for I Third inversion

V Third inversion

I First inversion

8.7 Learning the Coltrane Changes

8.7.1 Relative Complexity

Section 8.4 reported the results of training artificial neural networks on the ii-V-I 
progression problem using a variety of encodings. Although we discovered that 
choice of encoding affected the amount of training required for a network to 
converge, the major finding of that section was that a very simple network—a per-
ceptron with integration devices in its output layer—could learn any version of the 
ii-V-I progression problem. We have seen that the Coltrane changes elaborate the 
ii-V-I progression, and that the Coltrane changes are more difficult for musicians to 
perform or to improvise over. Are they more difficult for networks to learn?

The following sections report the results of training networks on various 
encodings of the Coltrane changes, and show that choice of encoding can have an 
important effect on network complexity. In general, though, all of these simulations 
point to one general conclusion: the Coltrane changes are indeed more complicated 
than the ii-V-I progression. This is because an integration device perceptron was 
never capable of learning a solution to the Coltrane changes, regardless of the choice 
of encoding. The Coltrane changes require using a more complex network.



doi: 10.15215/aupress/9781771992206.01

238 Connectionist Representations of Tonal Music

8.7.2 Pitch-Class Encoding

In all of the simulations reported in this section, I attempt to discover the simplest 
network capable of learning the Coltrane changes. With pitch-class encoding, a 
multilayer perceptron is required. This perceptron uses value units for its output 
units, and requires nine hidden value units in order to converge. During training, 
its connection weights are randomly initialized in the range from −0.1 to 0.1, and µs 
are initialized to zero. The learning rate is 0.01, and each µ is modified by training. 
The order of pattern presentation is randomized for each epoch of training.

A simulation experiment was conducted in which 25 different networks were 
trained until convergence was achieved; convergence involved generating a “hit” 
for every output unit and every training pattern. In this simulation experiment 
convergence was achieved after a mean of 5299.12 epochs of training (SD = 2774.75). 
The fastest convergence was obtained after only 1771 epochs of training, while the 
slowest convergence required 13,044 epochs.

8.7.3 Pitch Encoding without Inversions

When I use pitch encoding to encode the Coltrane changes chords in their root 
form, a much simpler network is able to learn the problem: a perceptron that uses 
value units in the output layer. A simulation experiment was conducted in which 
25 different networks of this type were trained to convergence. The network was 
initialized and trained in an identical fashion to the multilayer perceptron described 
in Section 8.7.2, with the exception that a learning rate of 0.1 was used. On average, 
convergence was obtained after 301.08 epochs of training (SD = 61.81). The fastest 
convergence was obtained after 168 epochs, while the slowest convergence required 
380 sweeps of training.

While a perceptron learns this version of the Coltrane changes, the fact that 
this perceptron uses value units instead of integration devices indicates that this 
encoding of the Coltrane changes is still more complicated than the ii-V-I progres-
sion problem. This is because a value unit makes a more complicated carving of 
a pattern space, making two parallel cuts through it instead of just one (Dawson, 
2004, 2005, 2008).

8.7.4 Pitch Encoding with Inversions

As noted in Section 8.6.4, I studied two different versions of the inverted Coltrane 
changes. Let us first consider the version in which we did not shift chords to all have 
at least one note in the first octave of the pitch representation. This version of the 
problem is very difficult in comparison to the non-inverted version of the Coltrane 
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changes. A multilayer perceptron with 11 hidden units is required; all of the output 
units and all of the hidden units of this network are value units. The structure of this 
network is initialized in the same way as those discussed above, and it is trained with 
a learning rate of 0.01. A simulation experiment in which 25 different networks were 
trained revealed that convergence was obtained after an average of 5237.68 epochs of 
training (SD = 1487.00). This amount of training is not significantly different from 
the amount required by the networks trained on the pitch-class representation of 
the problem (t = 0.0976, df = 36.735, p = 0.9228). It is, however, significantly greater 
than the amount of training required for the perceptron given the non-inverted 
encoding (t = −16.5849, df = 24.083, p = 0.001).

The version of the Coltrane changes in which inverted chords were shifted 
downward to start in the first octave of inputs also requires a multilayer perceptron 
that is built with value units and contains 11 hidden units. A simulation experiment 
revealed that this network took much longer to converge than did the other version 
of the inverted Coltrane changes. On average, 8299.92 epochs of training were 
required to reach convergence (SD = 3446.14). This amount of training is significantly 
greater than the amount required by the other version of the inverted chords (t = 
−4.0794, df = 32.638, p = 0.001).

It appears, then, that using inverted chords makes learning the Coltrane changes 
a much harder task. First, a more complicated network is required. Second, more 
training is required. One likely reason for this result is that inverting the chords 
requires networks to learn more causal links between chord forms than is required 
when chords are not inverted. In addition, shifting the chords down to all start from 
the same octave makes the task even more difficult. This is likely because this shift 
disrupts causal relations between chords even further.

8.7.5 Lead Sheet Encoding

The lead sheet encoding of the Coltrane changes leads to the most efficient learn-
ing of this progression. As with the pitch representation of non-inverted chords, 
a value unit perceptron learns the lead sheet version of the problem. A simulation 
experiment in which 25 of these networks were trained revealed that on average 
convergence was achieved after 72.36 epochs of training (SD = 1.89). This is a sig-
nificantly smaller amount of learning than is required by the perceptron presented 
the non-inverted chords (t = 18.4924, df = 24.045, p = 0.001).

In summary, all of the results described above support two general conclusions. 
First, the Coltrane changes are more difficult than the ii-V-I progression because, 
regardless of encoding, they cannot be learned by an integration device perceptron. 
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Second, choice of encoding of the Coltrane changes has a marked effect on network 
learning. This choice determines both network complexity and the amount of train-
ing required to achieve convergence.

8.8 Interpreting a Coltrane Perceptron

8.8.1 Coltrane Causality

How does an artificial neural network represent its knowledge of the Coltrane chan-
ges? To answer this question let us interpret the internal structure of a value unit 
perceptron that learns this progression using lead sheet encoding. Before examining 
the network, it will be useful to understand the causal structure that links chords in 
the Coltrane changes, which we can infer from examining Table 8-6.

First, because lead sheet encoding separates chord types from chord roots, let us 
consider the causal links between chord types in the Coltrane changes. There are 
only three relationships between chord types. First, a minor seventh chord always 
causes the next chord to be a dominant seventh. Second, a dominant seventh chord 
always causes the next chord to be a major seventh. Third, a major seventh chord 
always causes the next chord to be a dominant seventh. Let us next consider causal 
links between chord roots. These causal links are mediated by chord type, but we 
can ignore this context for the time being.

First, a chord root can cause the next chord root to be a minor second or one 
semitone higher. For instance, the first row of Table 8-6 shows that the first tran-
sition for the Coltrane changes in the key of A major is from a chord with the root 
of B to a chord with the root of A.

Second, a chord root can cause the next chord root to be a perfect fourth or five 
semitones higher. For example, Table 8-6 shows that this happens three times in 
the key of A major: C causes F, G♯ causes C♯, and E causes A.

Third, a chord root can cause the next chord root to be a minor third or three 
semitones higher. For instance, Table 8-6 shows that this happens twice in the key 
of A major, because F causes G♯, and C♯ causes E.

When causal links involving chord types and causal links involving chord roots 
are considered in combination, very systematic causal relations emerge in the Col-
trane changes. First, causal links between specific chords are unique. For instance, 
C7 always precedes Fmaj7. An examination of Table 8-6 indicates that any chord of 
interest only precedes one chord.

Second, this property means that there are chains of chord sequences that are 
repeated in different keys of the Coltrane changes. One example chain is C7 – Fmaj7 
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– C♯7 – G♯7 – C♯maj7. This sequence of chords appears in the first row of Table 
8-6, where C7 is the first lead-in for the V chord in the key of A major. The same 
sequence is also found in the fifth row of Table 8-6, where C7 is the second lead-in 
for the V chord in the key of C♯ major.

In short, the Coltrane changes can be described as a set of systematic and unique 
causal links in which the occurrence of one chord in a network’s input units neces-
sarily causes the occurrence of a specific chord in the output units. In order to 
“know” the Coltrane changes, a network must adjust its connection weights in such 
a way as to realize these causal links. In the next section, we discover how a value 
unit perceptron accomplishes this.

8.8.2 Network Structure

The network to interpret is a value unit perceptron trained on the lead sheet encod-
ing of the Coltrane changes. This particular perceptron is initialized in the same 
fashion as was described earlier in this chapter, and was trained with a learning rate 
of 0.1. However, in order to facilitate network interpretation I hold the µ of each 
output unit to zero throughout training. As a result, for an output unit to turn on, 
its net input needs to be near zero in value. The network converges after 93 epochs 
of training. Table 8-8 presents the resulting connection weights.

8.8.3 Network Causality

Table 8-8 The connection weights for a perceptron that has learned the Coltrane 
changes in lead sheet notation.

Input 
unit

Output unit

m7 D7 maj7 A A# B C C# D D# E F F# G G#

µ 0.00 0.00 0.00 0.23 −0.79 0.22 0.24 −0.25 −0.79 0.79 −0.25 0.23 0.24 −0.24 −0.22

m7 −0.98 0.07 1.04 2.10 1.45 2.09 2.12 −2.09 −1.78 1.78 −2.11 2.12 2.13 −2.11 −2.09

D7 −1.06 −1.23 −0.19 1.11 −1.76 1.10 1.12 −1.11 1.42 −1.43 −1.12 1.12 1.13 −1.12 −1.10

maj7 −1.03 0.07 1.09 0.78 0.76 0.78 −1.12 −0.74 1.78 0.26 −0.74 0.77 0.77 −0.77 −0.78

A −0.36 −0.07 0.19 0.77 −0.26 −0.17 0.75 1.11 −0.26 −1.77 −0.74 0.77 0.77 −0.77 −0.78

A# −0.24 −0.07 0.19 0.78 −0.26 0.78 −0.20 −0.74 −1.41 0.27 2.11 0.77 0.77 −0.77 −0.78

B −0.24 −0.07 0.19 0.77 −0.26 0.78 0.75 0.19 −0.26 1.42 −0.75 −2.11 0.77 −0.77 −0.78
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Input 
unit

Output unit

m7 D7 maj7 A A# B C C# D D# E F F# G G#

C −0.25 −0.07 0.19 0.78 −0.25 0.79 0.75 −0.74 0.76 0.26 1.11 0.77 −2.12 −0.77 −0.78

C# −0.27 −0.07 0.19 0.78 −0.26 0.79 0.75 −0.74 −0.26 −0.75 −0.74 −1.11 0.77 2.11 −0.78

D −0.23 −0.07 0.19 0.77 −0.26 0.78 0.75 −0.74 −0.26 0.27 0.19 0.77 −1.12 −0.77 2.09

D# −0.25 −0.07 0.19 −2.10 −0.25 0.78 0.75 −0.74 −0.26 0.27 −0.74 −0.18 0.77 1.11 −0.78

E −0.22 −0.07 0.19 0.78 −1.44 0.78 0.75 −0.74 −0.26 0.27 −0.75 0.77 −0.19 −0.77 1.10

F −0.32 −0.07 0.19 −1.10 −0.26 −2.09 0.75 −0.74 −0.26 0.26 −0.75 0.77 0.77 0.19 −0.78

F# −0.23 −0.07 0.19 0.77 1.76 0.78 −2.11 −0.74 −0.26 0.27 −0.75 0.77 0.77 −0.76 0.17

G −0.26 −0.07 0.19 −0.18 −0.25 −1.09 0.75 2.09 −0.26 0.26 −0.74 0.77 0.77 −0.76 −0.78

G# −0.26 −0.07 0.19 0.23 −0.79 0.22 0.24 −0.25 −0.79 0.79 −0.25 0.23 0.24 −0.24 −0.22

Note. Each row corresponds to an input source (µ or an input unit) and each column 
corresponds to an output unit. Unique connection weights from input to output are 
highlighted in grey.

How do the connection weights in Table 8-8 represent the Coltrane changes? They 
do so by instantiating all of the specific causal relationships that were introduced 
in the previous section. First, consider the causal relationships that link an input 
chord type to an output chord type. These relationships are enforced by the weights 
presented in the first three columns of Table 8-8. In the Coltrane changes, an input 
minor seventh chord causes an output dominant seventh chord. Two aspects of 
the connection weights bring this condition to life. First, the connection between 
the input unit for m7 and the output unit for D7 has a weight of 0.07. Second, the 
connection between every chord root input unit and the output unit for D7 has a 
weight of −0.07. As a result, when the m7 unit is activated at the same time as a 
chord root input unit, the signals from the two input units to the D7 output unit 
cancel out to zero, turning this input unit on.

A dominant seventh chord can also be activated by a major seventh chord. 
The network accomplishes this in exactly the same way as was described in the 
preceding paragraph: note that the connection weight from the maj7 input unit 
to the D7 output unit is also equal to 0.07. Its signal, when combined with the 
signal from a chord root input unit, produces a net input of zero that again turns 
the D7 output unit on.
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The network uses the same connection weight logic to activate the maj7 output 
unit when the D7 input unit is activated. The connection weight from this particular 
input unit to this particular output unit is −0.19. The connection weight between 
any chord root input unit and the maj7 output unit is 0.19. As a result, the D7 input 
unit will combine with any input chord root unit to produce a net input of zero that 
activates the maj7 output unit.

Importantly, the network also assigns connection weights to the first three col-
umns of Table 8-8 in such a way that output units do not turn on when they are 
supposed to be off. For example, an input chord never turns on the m7 output unit, 
because the minor seventh is the chord that starts the Coltrane changes in a given 
key. Note that no combination of input signals in the first column of Table 8-8 will 
produce a net input of zero. Similarly, the connection weights from the “wrong” 
chord types to either the D7 or the maj7 output units are extreme enough never to 
be cancelled by a signal coming from any input chord root unit.

Let us now turn to considering how the weights in Table 8-8 handle causal links 
involving chord roots. To do so let us consider the output unit for pitch-class A. 
The connection weights that feed into this output unit are presented in the fourth 
column of the table. This output unit is activated by three different causal links 
between chords: E7 – Amaj7, F♯maj7 – A7, and G♯m7 – A7.

The first clue as to how these causal links are instantiated by a perceptron comes 
from examining the connection weights in Table 8-8 from each of the chord root 
units to the A output unit. All but three of these weights are approximately 0.77. 
The only three exceptions involve the pitch-classes involved in the three causal 
relationships described above. The weight from E is −2.10, the weight from F♯ is 
−1.10, and the weight from G♯ is −0.18.

The second clue to chord root causality comes from the relationship between 
these three different weights to the weights between the A output unit and the three 
chord type input units. First, the weight from the D7 input unit to A is 2.10. This 
exactly cancels the signal coming from the E input unit. In other words, when D7 
and E are both activated, the A output unit will turn on.

A similar relationship holds for the other two input chord types. The weight 
from the maj7 input unit to the A output unit is 1.10, which cancels out the signal 
from the F♯ input unit. As well, the weight from the m7 input unit to the A output 
unit is 0.23, which essentially cancels out the signal coming from the G♯ input unit.

In short, it appears that for the A output unit to turn on, the two input units 
must be activated at the same time. One is a chord type unit; the other is a unit 
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representing the chord root. The pairing of chord type and chord root is exactly as 
required by the causal relationships involved in turning the output unit on.

An examination of the remaining columns in Table 8-8 reveals the same connec-
tion weight logic. All but three of the connection weights have the same value. The 
three that have unique values come from input chord roots involved in turning a 
particular output unit on. The unique values serve to cancel out the signal coming 
from a particular chord type unit. These unique values are highlighted in grey in the 
table. Note that this pattern of grey is very systematic, tracing out a pattern of three 
diagonals through these weights. This pattern reflects the systematic relationships 
between input and output chord roots when the musical intervals between these 
roots are considered (see Section 8.8.1).

8.9 Strange Circles and Coltrane Changes

8.9.1 Circles of Major Thirds

When I use lead sheet encoding for a chord progression problem, a chord’s type and 
a chord’s root are encoded separately. This provides a network with an opportunity 
to determine independently an output chord’s type and root. The analysis of the 
Coltrane changes perceptron in Section 8.9 indicates that the network does not 
take this independent path. Instead, the network makes explicit the specific causal 
relationships between pairs of chords. For example, instead of asserting that 7 – 
maj7 and C – F, the network makes explicit the more specific relationship that C7 
– Fmaj7. This claim is supported by the fact that turning on any chord type output 
unit, or turning on any chord root output unit, requires combining signals from 
both a chord type input unit and a chord root input unit.

This approach to solving the Coltrane changes points toward a new direction 
for representing the structure of this chord progression. Figure 8-11 combined the 
circle of perfect fifths with the four circles of major thirds to generate a map of the 
Coltrane changes in any key. An alternative approach to generating the Coltrane 
changes in a particular key is to use only the circles of major thirds.

Two aspects of the network interpretation inform this approach, which is 
described in detail below. First, a particular input chord (i.e., a combination of chord 
type and chord root) always causes a particular output chord. Second, a particular 
input chord never causes an output chord where the roots of the input and the 
output chords belong to the same circle of major thirds. For example, in Table 8-8, 
output chords with the root A are only caused by input chords with the roots E, 
F♯, or G♯ (the grey cells in the A column). Output chords with the root A are never 
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caused by input chords with the roots C♯ or F, which belong to the same circle of 
major thirds as does A.

This suggests that the Coltrane changes is a sequence of chords in which one 
chord (associated with one circle of major thirds) can only cause a subsequent chord 
that is associated with a different circle of major thirds. Interestingly, this means 
that there is a very simple algorithm that uses three different circles of major thirds 
to generate the seven chords of the Coltrane changes in a particular major key 
(Figure 8-13).

Figure 8-13 Using three circles of major thirds to define the Coltrane changes for 
the key of C major.

Figure 8-13 uses three different circles of major thirds to generate the Coltrane 
changes for the key of C major. The first row of the figure provides the three circles 
of major thirds; their orientation is critical. The first circle is used once to generate 
the minor seventh chord that begins the progression. The chord that is played is 
at the top of the circle, and is pointed to by an arrow. The second circle is used to 
generate the dominant seventh chord. It is first used to select the D♯7 chord in the 
top row of the figure, again a chord pointed to by an arrow. The third circle is used 
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to generate the major seventh chord. It is first used to select the G♯maj7 chord in 
the top row of the figure.

Importantly, to generate the remaining chords in the progression, one first 
rotates each of the second two circles of major thirds counter-clockwise by 120°. 
This brings two new chords to the top of these circles, as illustrated in the second 
row of the figure. These chords are then played in succession; the second circle is 
used to generate the next dominant seventh chord (B7) and the third circle is used 
to generate the next major seventh chord (Emaj7). Then these two circles are rotated 
again counter-clockwise by 120°. This brings the final two chords to the top of these 
circles, as is shown in the third row of the figure.

The three circles of major thirds illustrated in Figure 8-13 can be used to gener-
ate the Coltrane changes for two other musical keys as well. If one takes each circle 
in the top row and rotates it counter-clockwise by 120 degrees, then the circles will 
generate the Coltrane changes for the key of G♯ major if the preceding algorithm is 
used. If the circles in the top row of Figure 8-13 are each rotated counter-clockwise 
by 240 degrees before starting, then they will produce the Coltrane changes for 
the key of E major.

With different combinations of circles of major thirds, one can produce the Col-
trane changes for any major key. The specific combinations are provided in Figure 
8-14. The first row of this figure provides three circles oriented to generate the 
Coltrane changes for the key of C major (as was illustrated in Figure 8-13); rotating 
each of these circles once clockwise or twice clockwise orients them for generating 
the progression for G♯ major and E major respectively. The second row is oriented 
to produce the progression for A♯ major, and can be rotated to accommodate the 
keys of F♯ major and D♯ major. The third row is oriented for B major, and can be 
rotated to produce the chord sequence for G major and D♯ major. The final row is 
oriented for C♯ major, and can be rotated to produce the Coltrane changes for A 
major and F major.

Figure 8-14 is interesting because it shows that each circle of major thirds appears 
three times; each time it appears it does so in a different column. As well, each circle 
of major thirds is missing from only one of the four rows in the figure. Figure 8-14 
is also of interest because it points in certain directions related to jazz composing. 
First, because the Coltrane changes are comprised of seven chords, the first circle 
of thirds is only used to generate one chord. In other words, while the Coltrane 
changes define two lead-in chords to the V chord of the ii-V-I, as well as the I chord 
of this progression, they do not define lead-in chords for the ii chord. Figure 8-14 
provides a strong motivation for elaborating the Coltrane changes by adding two 
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new chords, both minor seventh chords that lead in to the ii. The chords in ques-
tion are provided by the two unused pitch-classes in the first column of the figure. 
Second, the fact that each row of Figure 8-14 is missing a circle of major thirds leads 
one to consider adding it to provide up to three new chords for the progression. 
Some musical exploration is required to determine where in Figure 8-14 one would 
insert this new source of chords, as well as to determine the kind of chord to asso-
ciate with this additional component.

Figure 8-14 The circles of major thirds for generating the Coltrane changes in 
any key.
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8.10 Summary and Implications

At the start of this book, I introduced artificial neural networks as artifacts primarily 
used for pattern classification. That is, they arrange input patterns as points in a 
space (either a pattern space or a hidden unit space), and output units carve this 
space into decision regions. If a pattern falls into one decision region, the network 
generates one kind of response (i.e., one kind of “pattern name”); if it falls into a 
different decision region, a different response is generated.

In earlier chapters, I have demonstrated that pattern classification is a general 
ability that can be applied very neatly to a variety of musical problems. For example, I 
have used it to identify scale tonics, scale modes, musical keys, and chord types. The 
current chapter has shown a further flexible use of pattern classification in which 
the response generated by a network to an input chord is a special name: the name 
of another chord. This permits a network to represent chord progressions in its 
internal structure. I demonstrated this ability by training networks on two different 
chord sequences, the ii-V-I progression and the Coltrane changes.

In addition to demonstrating this ability, this chapter also explored the import-
ance of how one encodes network stimuli and responses. One of the main results 
obtained in the current chapter was that the choice of encoding had enormous 
impact on problem complexity. For the ii-V-I progression problem, I discovered that 
encoding did not affect network complexity: all versions of this problem could be 
learned by an integration device perceptron. However, the choice of encoding did 
affect the amount of training required for a network to discover a solution to this 
problem. For the Coltrane changes, choice of encoding not only affected learning 
speed but also determined network complexity. Some versions of this problem could 
be solved by a value unit perceptron, while others required multilayer networks of 
value units that included 11 hidden units.

While a main purpose of the current chapter was simply to illustrate the import-
ance of encoding choices, it is important to keep in mind the implications of such 
choices. Obviously, problem difficulty is dictated by problem encoding. What 
encoding, then, should one choose for their networks? It might be very tempting 
to explore a variety of different and plausible encodings, and then to choose the 
one that generates the simplest networks. In some cases, this might very well be 
the appropriate strategy. However, other factors must also be considered when 
choosing an encoding. For example, perhaps the goal of a network is to provide 
insight into the formal regularities that govern a specific musical problem. In this 
case, the encoding that leads to the simplest network may not be the most appro-
priate, because the encoding may cause certain musical regularities to disappear. 
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We saw earlier in this chapter that one key element of the musical theory of chord 
progressions is voice leading. The lead sheet notation described in this chapter 
generates simple networks, but this encoding hides essential properties related to 
voice leading. Therefore, if one is interested in using networks to explore regularities 
of voice leading, then the encoding that leads to the simplest network may not be 
the most appropriate.

As another example, perhaps the goal of training a musical network is to discover 
representations that serve as the basis for musical cognition. In this case, we may 
not be searching for the encoding that produces the simplest networks. Instead, we 
might be searching for the encoding that generates the greatest similarity between 
various measures of network performance and structure and measures of perform-
ance of human listeners in a musical cognition experiment.

From the perspective of musical cognition, human listeners are “black boxes.” 
This is because we cannot directly observe the internal structures and processes 
that mediate musical cognition. Instead, we can only infer these internal properties 
from observations of external behaviour. This process of inference is known as 
reverse engineering. By observing human responses to musical stimuli in a variety 
of clever experimental situations, we attempt to discover the structures, processes, 
or algorithms inside the black box.

Reverse engineering is hard enough because we cannot directly see inside the 
black box. A second issue that makes reverse engineering challenging is that each 
input/output or stimulus/response pairing that we can observe can be mediated by 
more than one process. There is a many-to-one mapping from possible structures, 
processes, or algorithms to input/output relations (Dawson, 2013). As a result, we 
might believe that one process is responsible for mediating observed behaviour, but 
a very different process might actually be responsible. Therefore, we require some 
special observations useful for validating one theory about what is inside the black 
box as opposed to another. Fortunately, black boxes will generate some observable 
behaviours that are side effects of the processes inside the black box. These side 
effects—called artifacts by Dawson (2013)—can provide critical information for 
theory validation (Pylyshyn, 1980, 1984).

For instance, one consequence of representing a problem in a particular format 
might be that some instances of the problem can be solved quickly, while other 
instances are more difficult to solve. In performing mental arithmetic, for example, 
one might expect that if numbers were represented mentally in columns then addi-
tion problems that require carrying digits from one column to another would take 
longer than problems that did not require this operation. One can collect relative 
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complexity evidence (Pylyshyn, 1984) to investigate artifacts of this type. With rela-
tive complexity evidence, one varies the nature of problems presented to a system, 
and then explores the relationship between the properties of the problems and the 
time required to solve them.

A related type of data provides intermediate state evidence (Pylyshyn, 1984). 
This kind of evidence presumes that information processing inside the black box 
requires a number of different processing stages, and that each stage might represent 
intermediate results in a different format. To collect intermediate state evidence, 
one attempts to determine the number and nature of these intermediate results. 
For example, when researchers determined that items in short-term memory were 
confused with similar sounding items (Conrad, 1964) and not with items with sim-
ilar meaning, this suggested that an intermediate memory store used an acoustic 
encoding (Waugh & Norman, 1965).

A particular type of data, called error evidence (Pylyshyn, 1984), is very well 
suited to determine intermediate states. When extra demands are placed on a 
system’s resources, it may not function as designed, and its internal workings are 
likely to become more evident (Simon, 1969). This is not just because the overtaxed 
system makes errors in general, but because these errors are often systematic, and 
their systematicity reflects the underlying representation. For example, one study 
(Yaremchuk & Dawson, 2005) investigated a multilayer perceptron trained to iden-
tify tetrachord types. When some of its hidden units were removed, the network 
only made very specific errors: it failed to identify tetrachords as being major when, 
and only when, they were in their second inversion form. This suggested that the 
role of the missing hidden units was to permit the network to deal with this rather 
specialized type of input.

What is the relationship between relative complexity evidence, intermediate 
state evidence, error evidence, and choice of encoding? In many cases, researchers 
are specifically interested in using artificial neural networks to serve as models of 
human musical cognition (Griffith & Todd, 1999; Todd & Loy, 1991). In this case, 
establishing the validity of the model likely requires collecting all three types of evi-
dence, not only from the human subjects but also from the neural network model. 
The hope would be to find a close relation between the evidence collected from 
the human subjects and the evidence collected from the neural network model. 
Importantly, this match is likely to be highly related to choice of encoding. In other 
words, a music cognition researcher may not be interested in seeking the encoding 
that leads to the simplest network, but instead in seeking the encoding that leads 
to the best match between subject and model.
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Connectionist Reflections

9.1 A Less Romantic Connectionism

The Overture that began this book fancifully asked whether it is true that two 
systems that generate the same musical inputs and outputs must also share an 
underlying theory of music. Do the aliens inside the mother ship in Close Encoun-
ters of the Third Kind require a theory of Western music to jam with the human 
scientists below? Alternatively, is it possible that some alien musical theory can 
also produce identical musical patterns? The purpose of this book was to explore 
this issue, replacing fictional organisms from another world with agents that are 
more practical: artificial neural networks. I trained networks to perform a number 
of tasks that mapped musical stimuli to responses that are well defined in Western 
music theory. After successfully teaching these networks, I conducted in-depth 
analyses of their internal structure. In general, I discovered formalisms inside these 
networks that differed from those that are typical of Western music. The purpose of 
this chapter is to step back and consider the general results that have been detailed 
in the preceding chapters, and to discuss the implications of these results. However, 
before embarking on this summary, let us first consider the relationship between 
the connectionist research we have been considering and more typical studies that 
employ artificial neural networks.

9.1.1 A Romantic Revolution

Connectionist cognitive science erupted in the mid-1980s with the discovery of 
learning rules capable of training networks with a layer of hidden units (Ackley, 
Hinton, & Sejnowski, 1985; Rumelhart et al., 1986). Connectionism, as a reaction to 
classical cognitive science, has many parallels with the Romanticist reaction against 
the age of reason (Dawson, 2013). Two of these parallels are of particular interest to 
us as we reflect upon the results presented in this book.
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First, as noted in Chapter 2, when connectionist cognitive science arose it 
explicitly abandoned theories that appealed to the rule-governed manipulation of 
symbols. When researchers introduced artificial neural networks by training them 
to perform prototypically classical tasks, such as changing the tense of verbs (Rumel-
hart & McClelland, 1986a) or solving logic problems (Bechtel & Abrahamsen, 2002), 
this was done to demonstrate that such tasks did not require using explicit rules and 
symbols. Connectionism is Romanticist in its abandonment of the formal or logical.

Second, connectionist cognitive science attacked the classical view for proposing 
theories that were neither neuronally inspired nor biological plausible. A central 
tenet of connectionism is that intelligence emerges from the unique and complex 
interactions among vast numbers of nonlinear neurons (Churchland, 1986; Church-
land & Sejnowski, 1992; Searle, 1984). However, in appealing to biologically plausible 
information processing, connectionists moved toward theories that were nearly 
impossible to elaborate fully. When inspired by the brain, connectionists are swept 
away by the sublime, revealing their Romanticism.

Connectionism’s rejection of the formal and its acceptance of the sublime are 
further cemented by the fact that connectionists rarely provide detailed interpret-
ations of their networks’ internal structures. Perhaps this is particularly true of the 
limited connectionist literature on music cognition. Many researchers believe that 
a key advantage of artificial neural networks is their ability to adapt to musical regu-
larities that cannot be formalized (Bharucha, 1999; Rowe, 2001; Todd & Loy, 1991).

Recent developments in artificial neural network research take connectionist 
Romanticism even further. In the 1980s, the connectionist revolution began with 
networks that used only one or two layers of hidden units. Nowadays there is a 
growing sense that such networks are inadequate for adapting to complex, real 
world situations. There is an emerging interest in new set of techniques called 
deep learning that allows researchers to train networks with many layers of hidden 
units (Bengio, Courville, & Vincent, 2013; Hinton, 2007; Hinton, Osindero, & Teh, 
2006; Hinton & Salakhutdinov, 2006; Larochelle, Mandel, Pascanu, & Bengio, 2012). 
However, the interpretation of deep networks is even more challenging than the 
interpretation of shallower networks (Erhan, Courville, & Bengio, 2010). Thus, 
as connectionism turns more and more to deep learning, it becomes even more 
Romanticist in nature.

9.1.2 Reducing Romanticism

The research presented in this book moves in the direction opposite to deep learning. 
I have trained very shallow networks—some having no hidden units at all—on very 
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simple musical tasks, employing very straightforward representations. This approach 
reacts against connectionist Romanticism. I am not concerned with informal, sub-
lime musical properties. Instead, this research project explores the ability of shallow 
networks to capture formal musical regularities. Furthermore, I am particularly 
interested in whether networks can reveal new formal properties that are not typical 
of modern music theory. This book has explored the viability of an anti-Romanticist 
use of artificial neural networks.

This exploration was largely inspired by one of the seminal publications in 
musical cognition, Carol Krumhansl’s Cognitive Foundations of Musical Pitch (Krum-
hansl, 1990a). Krumhansl used perceptual experiments to explore her subjects’ 
responses to musical stimuli. Recognizing the enormous breadth of possible musical 
stimuli, not to mention the range of possible musical responses and the variety 
of potential musical expertise, Krumhansl shaped and streamlined her research 
by making a number of important design decisions. She developed paradigms 
that permitted responses to musical stimuli to be obtained easily. She focused on 
responses to a limited but well-established domain, musical pitch, typically creat-
ing her musical stimuli from a simple and tractable set of building blocks: the 12 
pitch-classes of Western tonal music. Krumhansl’s research led to a number of fun-
damental insights into music and musical cognition. These insights were possible 
because of her design decisions.

Before conducting our simulations, I made a number of design decisions that 
were similar in spirit to those made by Krumhansl. First, I employed supervised 
learning rules for our artificial neural networks. This is because I wanted to know 
exactly what networks learned to do to facilitate the interpretation of their internal 
structure. In supervised learning, networks converge to a solution only after they 
generate the desired (and known) response to each input pattern.

Second, all of our simulations trained networks to generate simple, 
well-established regularities of Western tonal music. Again, with a solid formal 
understanding of what networks learned to do I was hoping to be better positioned 
to interpret their internal structure. These tasks included identifying the tonic and 
the root of musical scales, key-finding, identifying the types of different triads and 
tetrachords, and generating chord progressions.

Third, most of our simulations used very simple input and output representations. 
Many of the networks described in earlier chapters used pitch-class encoding, which 
meant that very simple networks—networks that only had 12 input units—could learn 
a musical task of interest. Our choice of this representation paralleled Krumhansl’s 
(1990a) assumption of octave equivalence in her cognitive studies of musical pitch.
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Fourth, all of our simulations sought the simplest networks capable of con-
verging upon a solution to the task. Simple networks are easier to interpret. By 
seeking the simplest networks, I was able to make some surprising discoveries. For 
instance, identifying a scale’s tonic, performing key-finding, or generating the next 
chord in a jazz progression, can all be accomplished by simple perceptrons that do 
not require any hidden units.

Fifth, the point of each of our simulations was not simply to create a network 
to solve a particular musical task. Instead, the point was to interpret the internal 
structure of a trained network in order to determine the solution to the task that 
it had discovered.

All of the research presented in this book explores a basic question: can shallow 
networks trained on simple musical problems reveal anything novel about the struc-
ture of music? In general, I can say that the answer to this question is a resounding 
yes. Let us now reflect on the various results reported in the preceding chapters.

9.2 Synthetic Psychology 0f Music

9.2.1 Synthetic Psychology

Cognitive science is mostly conducted using an analytic strategy called reverse 
engineering (Cummins, 1983; Dawson, 2013). In reverse engineering, data is col-
lected from a behaving system, and then some type of model—a model of data, a 
mathematical model, or a computer simulation—is fit to the data (Dawson, 2004). 
The purpose of the model is to provide a concise account of the regularities in the 
data. Reverse engineers collect data first, and fit the model to the data second. How-
ever, an alternative research approach called forward engineering is also available to 
cognitive scientists (Dawson, 2004, 2013; Dawson et al., 2010a). Forward engineering 
is also known as synthetic psychology (Braitenberg, 1984). In forward engineering, 
a model is first put together from a basic set of interesting components. Then the 
behaviour of the model is observed in various situations. In forward engineering, 
the model does not describe data that has already been collected, but instead is the 
source of the data. Synthetic psychologists build their models first, and only collect 
data second—from the model they have constructed.

Artificial neural networks have been proposed as an ideal medium in which 
synthetic psychology can be conducted (Dawson, 2004). When used in forward 
engineering, the basic components of artificial neural networks (activation function, 
learning rule, etc.) are the basic building blocks used to construct the model. Because 
the network is trained on what to do, but is not told specifically how to accomplish 



doi: 10.15215/aupress/9781771992206.01

Connectionist Reflections 255

this task, networks can be a source of surprising algorithms or representations that 
can be used to propose novel theories in cognitive science. However, for connec-
tionist synthetic psychology to succeed, it requires substantial reverse engineering 
after synthesizing a network. The surprising revelations produced by connection-
ist forward engineering reveal themselves only after understanding the internal 
structure of a trained network. The insights that networks provide are not found 
in their behaviour (the input/output mappings they produce), but instead exist in 
the regularities that networks have discovered to mediate their behaviour.

This book serves as a case study in connectionist synthetic psychology. First, 
I forward engineer networks to solve basic musical problems. Second, I reverse 
engineer the networks to determine how they solve these problems, and to relate 
these methods to traditional music theory. The success of this approach is meas-
ured by the nature and number of surprising representations that I discover in the 
trained networks. The following sections summarize these major discoveries. The 
surprises that I revealed concern the complexity of networks trained on various 
tasks, the suitability of value units for musical tasks, the importance of the tri-
tone, the use of strange circles, and the properties of distributed representations 
of music.

9.2.2 Network Complexity

One of the mysteries confronting a connectionist forward engineer at the start of 
a project concerns network complexity. What kind of network is required to learn 
a task? Is a multilayer perceptron necessary? If so, how many hidden units does it 
require? When one begins a simulation project, one typically has certain expect-
ations about network complexity. Surprises often occur when these expectations 
are shown to be false.

One example of this occurred in the initial simulations involving scale tonics and 
scale modes (Chapters 3 and 4). Conventional music theory defines a very specific 
pattern of musical intervals between adjacent notes in both a major and a harmonic 
minor scale. It does not provide a similar general definition for the tonic of such a 
scale. Because of this, I expected that classifying a scale’s mode would be an easier 
problem than classifying its tonic. However, our simulations demonstrated that 
this expectation was false. Scale tonic identification is an easier problem that can 
be solved by a perceptron. Classifying scale modes is more complex, and requires 
the use of a multilayer perceptron. A second example of this sort of surprise was 
provided in our exploration of the ii-V-I progression problem. The expectation was 
that the pitch-class encoding of this problem would require a multilayer perceptron. 
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It was astonishing when this version of the problem could be learned by a perceptron 
that used integration devices for output units.

In general, it is interesting and perhaps somewhat surprising that small networks 
can solve all the various musical problems that I have considered, even when I use 
pitch-class encoding. The most complicated networks that were encountered (the 
more abstract encodings of the Coltrane changes) required between nine and 11 
hidden units. The remainder of the multilayer perceptrons reported in the book 
required far fewer hidden units.

9.2.3 The Value of Value Units

One reason for the relative simplicity of the networks that I have reported is that 
many of them use value units. I opted for value units because they offer many 
advantages over more traditional architectures when network interpretation is 
involved (Berkeley et al., 1995; Dawson, 1998, 2004, 2005, 2013; Dawson & Boechler, 
2007; Dawson et al., 2005; Dawson et al., 2000a; Dawson et al., 2000b; Nickerson, 
Bloomfield, Dawson, Charrier, & Sturdy, 2007). However, the simplicity of most of 
the networks suggests that the value unit architecture is particularly well suited for 
the synthetic psychology of music. Perhaps this is because the activation function 
of a value unit is tuned so that the unit only turns on to a very narrow range of net 
inputs (Dawson & Schopflocher, 1992). As a result, in most of my simulations value 
units learned to respond to a very small number of musical patterns. Clearly, this 
tuned sensitivity of the architecture facilitated network interpretation. However, it 
also permitted very simple networks to learn the problems that I defined. It appears 
that underlying almost all of the tonal tasks that I studied is a definite relationship 
between certain musical properties and a desired musical judgment.

This is not to say that the particular musical properties exploited by my networks 
are traditional or unsurprising. Most of the network interpretations revealed a very 
different logic underlying some aspect of Western tonality. These novel formalisms 
are summarized below.

9.2.4 The Prominent Tritone

There appears to be a bias against the tritone in Western music. A long history of 
studying the consonance of the various musical intervals has indicated that the 
tritone is one of the most dissonant. For many years, researchers have studied the 
perceptual properties of the various musical intervals (Bidelman & Krishnan, 2009; 
Guernsey, 1928; Helmholtz & Ellis, 1863/1954; Krumhansl, 1990a; Malmberg, 1918; 
McDermott & Hauser, 2004; McLachlan, Marco, Light, & Wilson, 2013; Plantinga & 
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Trehub, 2014; Plomp & Levelt, 1965; Seashore, 1938/1967). Perhaps it is because of its 
dissonance that the tritone is one of the least frequently appearing intervals, both 
in Western music and in the music of other cultures (Vos & Troost, 1989). Indeed, 
the rarity of the tritone is one of the reasons that its presence may be important for 
key-finding (Browne, 1981; Butler, 1989).

The networks that I have explored do not appear to share this bias against the 
tritone. Starting with the analysis of the scale mode network, one of the surprises 
that emerged from interpreting musical networks is their strong preference for 
the tritone. Repeatedly I found that networks took advantage of the fact that two 
pitch-classes were a tritone apart to structure their responses to musical stimuli. 
Table 9-1 tabulates the many examples of tritone usage that we have encountered.

Table 9-1 Examples from previous chapters of identifying tritone relationships in a 
variety of network interpretations.

Task Regularity Depiction

Detecting scale mode Tritone balance in both 
hidden units

Figures 4-3 and 4-4

Detecting scale mode Grouping of minor scales with 
identical balanced tritones in 
hidden unit space

Figure 4-2 and table 4-1

Triad classification Tritone balance in hidden unit 
weights

Figures 6-4 and 6-5

Classifying added note tetrachords Tritone equivalence in hidden 
units weights

Figure 6-24

Classifying extended tetrachords Tritone equivalence in hidden 
unit weights

Figures 7-8 and 7-10

Classifying extended tetrachords Tritone balance in hidden unit 
weights

Figures 7-11 and 7-12

ii-V-I progression problem Tritone organization of weight 
space in MDS solution

Figures 8-9 and 8-10

I repeatedly encountered two general types of tritone exploitation. The first is tri-
tone balance, in which two pitch-classes a tritone apart are assigned connection 
weights that are equal in magnitude but opposite in sign. As a result, when input 
units representing each of these pitch-classes are simultaneously active their signals 
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cancel each other out, typically increasing processor activity when value units are 
part of a network’s architecture.

The second is tritone equivalence, in which two pitch-classes a tritone apart are 
assigned identical connection weights. As a result, in terms of network processing 
both of these pitch-classes are functionally identical. Tritone equivalence frequently 
appears in networks trained on harmonic tasks like chord classification.

Tritone balance and tritone equivalence are characteristics of connection 
weights between input units and other processors. It is not surprising that when 
these tritone regularities are seen, I also find tritone organization in analyses that 
are more abstract. For instance, plots of points in hidden unit spaces, or from vari-
ous MDS analyses of weights or unit activities, organize themselves so that points 
related by a tritone are close together in the space.

All of these results lead naturally to a key question: Why do so many musical 
networks exploit the tritone? One possibility is that the tritone, which is a musical 
distance of six semitones, divides the octave exactly into two. Perhaps the networks 
discover that many musical tasks can be solved by identifying the same regularities 
in each half of the octave.

9.2.5 Strange Circles

The many examples of tritone equivalence provided in Table 9-1 illustrate another 
surprising property revealed in many network interpretations: the use of strange 
circles. A strange circle involves an equivalence class of pitch-classes that are related 
to each other by a specific musical interval, such as the six pitch-classes that define 
a circle of major seconds.

Network usage makes these circles “strange” because in a variety of circum-
stances different pitch-classes that belong to the same musical circle are assigned the 
identical connection weight. As a result, to the network these different pitch-classes 
are functionally identical. Table 9-1’s listing of tritone equivalences picks out the 
occasions in which the strange circles are based on the tritone. Table 9-2 provides 
the instances of strange circles based on other musical intervals that have been 
encountered in our network interpretations.

One interesting property revealed by Table 9-2 is that the use of strange circles 
based on intervals other than the tritone only seems to emerge for tasks involving 
harmonic stimuli. While strange circles of tritones appear in other tasks, the addi-
tional circles only appear when networks learn to classify triads or tetrachords.
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Table 9-2 Examples from previous chapters that discovered use of strange circles in 
different network interpretations.

Task Regularity Depiction

Triad classification Circles of minor thirds Figures 6-3 and 6-27

Triad classification Circles of major thirds Figures 6-4 and 6-5

Triad classification Circles of major seconds Figure 6-6

Classifying extended tetrachords Circles of major seconds Figure 7-5

Classifying extended tetrachords Circles of minor thirds Figures 7-7 and 7-8

Classifying extended tetrachords Circles of major thirds Figure 7-9

9.2.6 Distributed Representations

One of the major contributions of connectionism to the study of cognition has 
been the proposal for alternative forms of mental representation. Perhaps the most 
important of these connectionist contributions has been the notion of coarse coding 
or of distributed representation (Hinton et al., 1986; Pollack, 1990; Thrun, 1995). 
Although distributed representations are very difficult technically to define (Van 
Gelder, 1991), intuitively they involve simultaneous activities in a number of dif-
ferent hidden units; these activities are combined to produce a correct response. 
Coarse codes are interesting because each of the active components seem as though 
they have poor sensitivity to properties related to making correct judgments. In 
a distributed representation, each component is an inaccurate detector, but the 
combination of these poor components leads to high accuracy.

Distributed representations have been repeatedly encountered when inter-
preting musical networks. In two notable instances networks appear to solve 
musical problems by seeking intersections between groups of possibilities picked 
out by various inaccurate hidden unit detectors.

One example of this type of processing occurred when a multilayer percep-
tron was trained to perform key-finding (Section 5.4.2). Plots of each hidden unit’s 
responses to the various keys revealed that each was a very inaccurate detector 
of musical key (Figure 5-5). However, if one sought the intersection of the sets of 
keys picked out by each hidden unit’s activity, then the correct musical key could 
be isolated.

A second example of coarse coding was revealed in the examination of extended 
tetrachord classification. One reason for using the value unit architecture in many 
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of our simulations is that such units often produce bands of activity where each 
level of activity captures different subsets of input patterns (Berkeley et al., 1995; 
Dawson, 2004; Dawson & Boechler, 2007; Dawson & Piercey, 2001). This in turn 
can facilitate network interpretation. The hidden units in the extended tetrachord 
network demonstrated distinct banding (Section 7.3). Each of these bands picked 
out different subsets of extended chord types, again demonstrating the inaccuracy 
of detection by each individual hidden unit. However, if one determined the inter-
section of the different sets of chords picked out by each hidden unit’s band, then 
the correct type of tetrachord was the result.

The two instances provided above are the most prototypical examples of coarse 
coding that were revealed in my simulation studies. However, a more liberal notion 
of distributed coding permits us to claim that several other examples of this type 
of representation were discovered. For instance, on several occasions I described 
input stimuli as points in a hidden unit space, where the activity of each hidden 
unit to a pattern provides the coordinates of its location. Output units generate cor-
rect responses to problems by carving the hidden unit space into decision regions. 
Importantly, a hidden unit space is a distributed representation because the location 
of any point in this space depends upon considering the activity in each hidden 
unit simultaneously.

From this perspective, hidden units are not required to create distributed rep-
resentations; such representations are in perceptrons as well. For example, activities 
passing through every connection weight in a scale tonic perceptron must be con-
sidered in order to determine the tonic of an input scale. Furthermore, the set 
of weights in that perceptron combines the properties of major scales and har-
monic minor scales into a single (distributed) representation. Similarly, signals sent 
through all the weights of an ii-V-I perceptron provide a distributed representation 
of conditional probabilities related to specific output pitch-classes.

9.2.7 Summary

The results reviewed in this section indicate that my musical networks have yielded 
a number of interesting and surprising regularities. Even though these networks 
learned tasks that can be defined using traditional music theory, they have discov-
ered non-traditional means for mediating their input/output mappings.

Why might these results be of interest? The final sections of this chapter con-
sider the implications of these results for two different domains: music and musical 
cognition.
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9.3 Musical Implications

Section 9.2 provided a general overview of my simulation results. Simple artifi-
cial neural networks can easily be trained to perform musical tasks that are based 
on Western tonality. In addition, the internal structure of these networks can be 
interpreted; these interpretations reveal formal musical regularities. Many of these 
regularities provide interesting departures from traditional music theory. Ignoring 
musical cognition for the time being, what are the implications of such results for 
the study of music in general?

9.3.1 Levels of Investigation

Our consideration of these implications will be aided by recognizing that cognitive 
science investigates phenomena at different levels of analysis, each of which requires 
a special vocabulary to capture particular kinds of regularities (Dawson, 1998, 2013; 
Pylyshyn, 1984). Following the lead of computational vision pioneer David Marr 
(Marr, 1982), the most abstract level of analysis is the computational level. At this 
level, researchers investigate what kind of information processing problem is being 
solved by a system of interest. The computational level of analysis typically uses 
formal methods that provide proofs that answer this question.

The second level of investigation is the algorithmic level. At the algorithmic level, 
researchers are typically concerned with determining the particular information 
processes involved in solving an information-processing problem. That is, what 
algorithm or procedure is being used to solve an information-processing problem 
identified at the computational level of analysis? Experimental paradigms, like those 
developed by cognitive psychologists, typically provide the methods required to 
perform an investigation at the algorithmic level.

Marr’s third level of investigation is the implementational level. For Marr, this 
was the level where the methods of neuroscience explained how the informa-
tion processes identified at the algorithmic level are brought into being by the 
brain. In modern cognitive science, it is useful to consider two separate questions 
related to implementation. The first is the architectural level of investigation. At 
this level, one determines the most basic information processes that are wired 
into the brain (e.g., primitive symbols and primitive rules). Once this has been 
determined, an implementational analysis à la Marr can be conducted to explain 
how the architecture is built into the brain. As far as the relationship between 
our musical networks and music is concerned, the computational and algorithmic 
levels of analysis are highly relevant. Let us consider our network contributions in 
the context of these two levels.
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9.3.2 Theory Informs Algorithms

In connectionist cognitive science, the computational level of analysis is concerned 
with defining the input/output mapping performed by an artificial neural network. 
At this most abstract level, a network is a device that computes a mathematical func-
tion that converts input information into output information. The computational 
level of analysis defines the function being computed.

From this perspective, music theory itself defines and provides the input/output 
functions that networks were trained to generate in the preceding chapters. Identi-
fying a scale’s tonic or mode, or classifying triads or tetrachords into chord types, all 
involve functions whose formal structures are completely defined by music theory.

The tasks described in the preceding paragraph are formal but are not typically 
expressed mathematically. Fortunately, the formal apparatus of modern music 
theory permits mathematical definitions of these input/output mappings. Math-
ematical set theory was applied to music beginning in the 1960s in order to describe 
atonal music (Babbitt, 1960, 1961; Forte, 1973, 1985; Lewin, 2007; Straus, 1991). While 
aimed at atonal music, the properties that set theory formalizes can also be used to 
describe regularities in tonal music.

Indeed, it seems natural to consider that the function of many of my trained net-
works is to perform set theory operations. One of the basic operations in musical set 
theory is to express a musical pattern in normal order. A network that is presented 
a scale in pitch-class representation, and then delivers its tonic, can be thought of 
as a device that renders the stimulus into a set of elements in normal order, and 
then returns the first element in that set. A network presented a scale in the same 
format, but which delivers the scale’s mode, can be considered a device for assigning 
something akin to a Forte number to the input pattern.

9.3.3 Algorithms Inform Theory

Section 9.3.2 suggests that music theory in general, and musical set theory in particu-
lar, provides an appropriate formalism for a computational account of my musical 
networks. At the very least, music theory defines the training sets that I created for 
our networks. While the computational level defines what input/output mapping is 
being computed, analysis at the algorithmic level—network interpretation—reveals 
how this mapping is mediated by a network’s internal components (Dawson, 1998, 
2004, 2013). We have seen that the analysis of musical networks can reveal formal 
properties that are quite different from those used to define their training set. For 
example, one of the main results of the algorithmic analyses summarized in Section 
9.2 was the discovery that networks often use strange circles to solve harmonic 
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problems. In a strange circle, different pitch-classes that belong to a circle defined by 
a particular musical interval (e.g., circles of major thirds, major seconds, or tritones) 
are all treated as being the same pitch.

Musical set theory uses one strange circle—the circle of octaves—when it makes 
the assumption of octave equivalence. This assumption limits the basic elements 
of set theory to the 12 different pitch-classes. The strange circles discovered in the 
musical networks point to a radically different set of basic elements. For instance, 
circles of major seconds reduce one to considering only two different kinds of ele-
ments, pitch-classes that belong to one circle or pitch-classes that belong to the 
other. Similarly, a set theory based on circles of major thirds would consider only 
four different kinds of elements, because pitch-classes can belong to only one of 
four different circles.

If one were to develop a musical formalism based on one or more of the strange 
circles, then it seems obvious that it would be quite different from musical set 
theory. However, it might be both interesting and viable. After all, the networks 
appear to use such a theory to classify types of chords. For another example, consider 
a second major finding reported in Section 9.2, the discovery of tritone balance in 
a variety of networks. Unlike tritone equivalence, tritone balance means that the 
signal generated by a unit representing one pitch-class is cancelled by the signal 
generated by the unit representing the pitch-class a tritone away.

Tritone balance has some interesting implications for musical set theory. After 
assuming octave equivalence, music set theorists then order the elements that define 
a musical stimulus in a particular way. For instance, Forte numbering assigns the 
pitch-class C the value 0, the pitch-class C♯ the value 1, and so on. This means that 
in music set theory pitch-classes are organized around a circle of minor seconds 
(Figure 6-9).

In the circle of minor seconds, pitch-classes that are a tritone apart are opposite 
one another across the diameter of the circle. Tritone balance occurs when there is a 
special relationship between these opposite pitch-classes. To make this relationship 
explicit in music set theory one might first adopt a different numbering system. 
For instance, if C is assigned the number x, then F♯—a tritone away from C—could 
be assigned the number –x. Additional operations on sets, involving sums of these 
numbers, would then have to be invented to take advantage of whatever tritone 
balance might offer.

The previous examples have shown how certain properties discovered from 
network interpretations might inform musical set theory. Importantly, networks 
offer other information pertinent to the computational consideration of music. For 
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example, there is a long history of generating maps that represent the similarity 
between notes or scales in terms of the distances between points (Krumhansl, 2005; 
Schoenberg, 1969; Tymoczko, 2012). My musical networks provide a variety of new 
properties for generating maps that have different arrangements than those men-
tioned above. For instance, instead of measuring scale similarity in terms of shared 
pitch-classes, one can measure scale similarity in terms of connection weights. 
Similarly, at many points in preceding chapters we considered hidden unit spaces. 
These spaces are alternative maps of musical stimuli in which the coordinates of 
each point in the map are provided by hidden unit activities.

The point of considering different sorts of network-derived maps is that in many 
instances they might arrange musical stimuli in a fashion that is quite different from 
that found in other musical maps. By exploring these differences—by considering 
why certain musical entities are close to one another and why others are not—it is 
possible to develop alternative musical theories.

Musical networks can also provide evidence related to other computational 
issues. For example, one general type of question that often arises in computa-
tional analyses concerns the complexity of one situation in comparison to another. 
Network training provides one approach to answering such questions. In our simu-
lations, because of our interest in network interpretation, we sought to identify the 
simplest network capable of solving a musical problem. Comparing the structure 
of networks trained on different problems provides an indication of their relative 
complexity. For instance, we discovered that a value unit perceptron could solve the 
scale tonic problem but could not solve the scale mode problem. This suggests that 
identifying a scale’s tonic is a simpler information-processing problem than iden-
tifying its mode. Similarly, the various simulations reported in Chapter 7 indicated 
that the ii-V-I progression is simpler than the Coltrane changes. This is because 
an integration device perceptron is all that is required for the former, but a value 
unit perceptron or a multilayer network of value units is required for the latter, 
depending upon the choice of encoding.

9.3.4 Network Structure and Composition

The previous sections have pointed out that network interpretations can lead to 
alternative formal accounts of musical regularities. One interesting possibility raised 
by this discovery is that the novel formal properties discovered inside a network 
can be used to provide new methods for musical composition. An example of this 
possibility is described below.
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Atonal music has no discernible musical key or tonal centre because all 12 
pitch-classes from Western music occur equally often. Arnold Schoenberg invented a 
method, called the 12-tone technique or dodecaphony, for composing atonal music. 
In dodecaphony, one begins a new composition by arranging all 12 pitch-classes in 
some desired order; this arrangement is the tone row. The first note from the tone 
row is then used to begin the new piece. The duration of this note, and whether 
or not it is repeated, is under the composer’s control. However, once the use of 
this note is complete, dodecaphony takes control: the 12-tone method prevents 
the composer from using it again until all of the other 11 notes in the tone row 
have been used. Their use, naturally, follows the same procedure used for the first 
note: the composer decides upon duration and repetition, uses the note, and then 
moves on to the next note in the tone row. Let us now consider another approach to 
composing atonal music, one inspired by a feature that we have observed in several 
network interpretations.

We have seen several examples of artificial neural networks whose hidden units 
employ connection weights that assign various subsets of pitch-classes to classes, 
such as the four different circles of major thirds (Figure 6-17) or the two different 
circles of major seconds (Figure 6-13). Furthermore, these circles are often strange 
in the sense that the hidden units treat each member of the circle as being the 
same pitch-class. That is, all of the pitch-classes that belong to one circle of major 
seconds may be assigned the same connection weight (e.g., to the connection from 
a pitch-class input unit to a hidden unit). This means that the hidden unit is “deaf” 
to any differences between members of this subset of pitch-classes. For a hidden 
unit that uses equivalence classes based on circles of major seconds, there are only 
two pitch-classes: some “name” x (the weight assigned to C, D, E, F♯, G♯, and A♯) 
and some other “name” y (the weight assigned to C♯, D♯, F, G, and B).

Why do networks use strange circle equivalence classes to represent musical 
structure? One reason is that networks discover that notes that belong to the same 
strange circle are not typically used together to solve musical problems, such as clas-
sifying a musical chord. Instead, the network discovers that combining notes from 
different strange circles is more successful. This use of equivalence classes—com-
bining pitch-classes from different circles, but not from the same circle—suggests 
an alternative approach to composing atonal music.

Imagine a musical composition constructed from a set of different musical 
voices. Let each of these voices be derived from one strange circle. The notes sung by 
this voice are selected by randomly choosing from the set of pitch-classes that belong 
to the strange circle. For instance, if one voice was associated with a particular circle 
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of major thirds, then one could write its notes by randomly choosing one note at 
a time from the set [C, E, G♯]. To make the voice more musically interesting, one 
could add a randomly selected rest to the mix by selecting from the set [C, E, G♯, R] 
where R indicates a rest (i.e., no note is to be sung).

If one associated different voices with different strange circles, and composed 
via random selection as described above, then one would be following the general 
principle discovered by the network: pitch-classes from different strange circles can 
occur together, but pitch-classes from the same strange circle cannot. Furthermore, 
one could use this method to compose atonal music by wisely choosing which 
strange circles to use to create different voices. For instance, imagine creating a 
piece that included four voices, each associated with a different circle of major 
thirds. This composition would be atonal, in Schoenberg’s sense, because the four 
circles combine to include all 12 possible pitch-classes. Randomly selecting pitches 
from each of these circles would produce a composition that did not have a tonal 
centre because each of the 12 pitch-classes would occur equally often when the 
composition was considered as a whole.

One example of this sort of composition can be found at the following website: 
http://cognitionandreality.blogspot.ca/2013/03/composing-atonal-music-using-
strange.html. The website provides a musical score created by using this approach 
to composition. This score includes six staves, one for each voice. Each voice is 
generated by randomly selecting from one strange circle (and including rests in this 
sampling procedure). The top two staves, written in quarter notes, are each drawn 
from a different circle of major seconds. The bottom four staves, written in half 
notes, are each drawn from a different circle of major thirds. The score is created 
by applying two additional musical assumptions. First, while each wheel generates 
a pitch-class name, the composer decided how high or low (in terms of octave) each 
note is positioned. Second, in order to ensure that all notes tend to occur equally 
often in the score, the two circles of major seconds are sampled twice as frequently 
relative to the other four strange circles.

At the bottom of this web page, one can find links that play some of the voices 
individually, some combinations of a small number of the voices, and all of the 
voices together. On listening to these samples, one discovers that individual voices 
or strange circles are musical, but are not musically interesting. Music that is more 
interesting emerges from combining the random outputs of different circles. Other 
sets of strange circles than those used to create the score discussed above could also 
be used for composing. What kinds of atonal pieces can be created when many dif-
ferent strange circles are available? To answer this question, I created a Java program 
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that uses David Koelle’s music package jFugue (Koelle, 2008). This package lets the 
programmer define strings of musical notes, and then takes care of playing them. 
The program that I wrote lets the user choose a composition’s tempo and length 
with a mouse, and then make a checkmark beside every strange circle to be used 
in a piece. The user can decide whether to include rests, and set the duration and 
the octave (2 is lowest, 5 is highest) for each set of circles. A press of the “compose” 
button leads to a pause while the various voices are constructed, and then the piece 
is played through the computer’s speakers. One can easily explore the possibilities 
of strange circle composing with this program and listening to the sounds that it 
creates. This program is also available as part of the same blog post mentioned above.

9.4 Implications for Musical Cognition

Music theory, and its formalizations, defines the input/output mappings that our 
artificial neural networks have learned. Thus, it provides the vocabulary for the 
computational level analysis of the networks. My network interpretations have 
revealed how these computational mappings are mediated, and thus provide the 
algorithmic level analysis. However, we saw in Section 9.3 that these algorithmic 
level results could inform the computational level as well. What are the implications 
of our simulations for the study of musical cognition?

In general, the experimental study of cognition focuses upon the algorithmic 
level. This is because experimental cognitive psychology attempts to discover the 
procedures used by human subjects to process information (Dawson, 1998, 2013). 
From this perspective, there should be an important relationship between results 
in musical cognition and our simulations.

9.4.1 Networks and Algorithms

Even the most committed forward engineer realizes that at some point their models 
must be related to human data. A synthetic cognitive science of music must eventu-
ally find empirical links between networks and human musical cognition. How are 
these links to be established? Fortunately, when networks are trained they provide 
a great deal of different kinds of evidence that can be used to compare their musical 
representations and processes with those of human subjects.

To illustrate, let us consider what is called relative complexity evidence (Pyly-
shyn, 1984). Relative complexity evidence compares a system’s processing of one type 
of stimulus to another. For instance, when training musical networks, this could 
involve comparing the learning of different patterns over time. Are some types of 
patterns harder to learn than other patterns?
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In Chapter 6, I interpreted the structure of a multilayer perceptron trained to 
classify four different types of triads. To collect relative complexity evidence, I could 
save the state of the network (e.g., its structure, its responses to patterns, its errors) 
after every 250 epochs of training.

When this is done, some interesting properties are revealed. A typical network of 
this type performs well on augmented and diminished triads very early in training. 
It generates highly accurate responses to both types of these triads after only 250 
epochs of training. In contrast, it has more difficulty learning both major and minor 
triads. About 1000 epochs of training are required to reduce the error generated to 
major triads to the same level of error generated to the augmented and diminished 
triads. Minor triads provide the greatest challenge; about 1750 sweeps of training 
are required before this type of stimulus is learned.

Relative complexity evidence can be easily obtained to get a sense of the dynamics 
of learning a particular musical task. How might we compare this evidence to the 
behaviour of human subjects? One approach is to create a new experimental para-
digm, one that is as straightforward as the probe tone method (Krumhansl, 1990a). 
In general, this new experimental paradigm involves teaching human subjects on the 
same musical task that was presented to the network, where this teaching is done in 
a manner similar to that used for network training. For example, consider the triad 
classification problem from Chapter 6. One can build a block of training patterns to 
present a human subject, where a single block includes each of the 48 triads. In a given 
block, the order of patterns is randomized. During training, a subject hears a triad, 
and then classifies the sound. For instance, they might assign the sound to one of four 
different categories (A, B, C, or D). Of course, each category is associated with a triad 
type, but the subject need not be provided with the names of these types in order to 
respond. Because the subject is being trained in a fashion analogous to the network, 
learning needs to be supervised. After the subject classifies the stimulus, they are told 
what the correct response was. Then the next stimulus in the block can be presented.

Note that in this paradigm a block of trials for a human subject is analogous to 
an epoch of training for a network. So, if a subject is run through a series of train-
ing blocks, then they are learning in a similar fashion to the network. We continue 
training until an acceptable degree of accuracy has been achieved, assuming that 
the feedback that a subject receives after each trial improves their performance. 
Once the subject has “converged” to a solution to the triad classification problem, 
their data can be analyzed in a fashion similar to that of the network’s. For instance, 
the subject’s average accuracy to each triad type can be measured for each block of 
training. As a result, relative complexity evidence for human subjects can be directly 
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compared to the same kind of evidence collected for networks. One could argue 
that the similarity between these two sources of data reflects the degree that the 
network is learning the problem in the same way as a human.

Of course, in practice this paradigm would involve exploring a number of differ-
ent design decisions. We saw earlier that one could use different encodings of the 
same training set to affect network learning. Clearly, a variety of network encodings 
would have to be explored and compared to human data. We also have a variety 
of design decisions to explore when the human data is collected. Is performance 
affected by the timbre of stimuli? Is it affected by the octave in which stimuli are 
presented? Is it affected by inversions of chords? In short, this general approach to 
studying musical cognition opens the door to a wide range of studies that involve 
exploring different tasks, different network settings, and different experimental 
stimuli.

9.4.2 Musical Representations

The discussion in Section 9.4.1 concerns how one might use artificial neural net-
works to inform the algorithmic analysis of musical cognition, and how to explore 
the relationship between how networks and humans learn the same musical task. 
However, in addition to specifying algorithms cognitive scientists also must specify 
the architecture of cognition (Dawson, 1998, 2013). That is, they must determine the 
basic representations and operations available for solving an information-processing 
problem (Pylyshyn, 1984). Interpreting musical networks can inform the architec-
tural mission of the cognitive science of music.

As was noted in Chapter 1, one of the central assumptions of cognitivism is that 
humans actively process information. Musical cognition is thought to proceed by 
actively integrating musical stimuli with mental representations of music (Cook, 
1999; Deliège & Sloboda, 1997; Deutsch, 1982, 1999, 2013; Francès, 1988; Howell et 
al., 1985; Krumhansl, 1990a; Lerdahl, 2001; Lerdahl & Jackendoff, 1983; Sloboda, 1985; 
Snyder, 2000; Temperley, 2001). Furthermore, the act of organizing the music that 
we hear can affect how we represent it; presumably, musical representations change 
as a function of our musical experience and training.

It is therefore not surprising that at the heart of musical cognition one finds 
proposals about the nature of musical representation. For instance, the evidence 
supporting the existence of the tonal hierarchy (Krumhansl, 1990a) suggests that 
musical harmony is represented hierarchically in a system that makes certain musical 
structures more stable, central, or important than others depending upon context 
(Bharucha & Krumhansl, 1983). This in turn suggests that musical representation 
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may be analogous to how semantic concepts are represented in prototype theory 
(Rosch, 1975; Rosch & Mervis, 1975).

Other kinds of representation have been proposed. The tonal hierarchy for 
each key could be explicitly represented, as is required in models of key-finding 
(Krumhansl & Kessler, 1982). Harmonic structures could be represented spatially, 
where distances between represented entities reflect their similarity (Krumhansl, 
2005). There is a long tradition of employing spatial manifolds as representational 
primitives for cognition (Cutting, 1986; Cutting & Proffitt, 1982; Kosslyn, 1980, 1994; 
Shepard, 1984, 1990). Some have proposed that musical cognition is mediated by a 
language-like generative grammar (Lerdahl, 2001; Lerdahl & Jackendoff, 1983), while 
others have proposed representations that capture music’s probabilistic structure 
(Huron, 2006; Temperley, 2007). In the context of such representational proposals, 
what is the role of the simulations that we explored in preceding chapters?

If a key goal of musical cognitivism is to identify potential representational 
formats, then this search should be as broad as possible. Artificial neural networks 
offer a medium for discovering new representational proposals. Many of our dis-
coveries that were summarized earlier in this chapter—the prominent tritone, 
strange circles, and coarse codes—can be interpreted not just as contributions to 
music theory but also as contributions to music cognition. When we pull these 
regularities out of our networks, it is reasonable to ask whether they might also 
play a role in human cognition.

A network interpretation might simply point to musical information that a rep-
resentation should make explicit because it affects musical information processing. 
For instance, we saw that the tritone plays an important role in many of our net-
works. This is consistent with some results in the psychology of music. It has been 
claimed that human listeners can quickly identify a composition’s musical key by 
detecting the presence of rare musical intervals like the tritone (Brown & Butler, 1981; 
Browne, 1981; Butler, 1989; Van Egmond & Butler, 1997), although this theory has 
not gone unchallenged (Krumhansl, 1990b). Perhaps, more importantly, our network 
interpretations may also inform architectural proposals for musical cognition. When 
I discover a particular representational structure in my networks, like the use of par-
ticular strange circles, or a specific kind of coarse coding, it is natural to ask whether 
these structures are also part of the cognitive architecture for music. For instance, are 
strange circles literally part of the structure of musical representations? To answer 
such a question, one must design experiments that explore the relevance of the pro-
posed representation. However, designing these studies comes after generating the 
question. An important source of such questions is network interpretation.
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9.5 Future Directions

This book explored the viability of a synthetic cognitive science of music. Simple 
artificial neural networks learned basic musical tasks related to Western tonality. 
When a network completed its training, I interpreted its internal structure. The 
primary question explored in this book is whether this approach can inform the 
cognitive science of music. The results summarized in the current chapter, and 
detailed in the preceding chapters, should convince the reader that the approach 
introduced in this book holds a great deal of promise. Even though I adopted a very 
simple approach to training our networks, and even though I trained networks on 
tasks that are well understood in traditional music theory, I was able to uncover 
a number of novel and surprising results. My network interpretations revealed a 
number of representational insights that can inform both music theory (Section 
9.3) and musical cognition (Section 9.4). Now that I have established the viability of 
this approach, it is possible use it to venture into further, more complex, domains.

With respect to computational-level investigations, researchers can now pro-
ceed to explore a greater variety of musical information-processing problems. For 
instance, the Forte numbering system from musical set theory is used to assign an 
identifying number to a musical entity (Forte, 1973, 1985). This is useful because in 
many cases two musical entities that seem to be quite different may be assigned the 
same Forte number. This in turn implies that they are functionally equivalent. This 
means that musical set theory can define problems that are more involved where, 
for example, two musical entities that are assigned the same Forte number generate 
identical network outputs.

With respect to algorithmic-level investigations, experimental psychologists 
can now proceed to research that has the goal of relating evidence gathered from 
networks to analogous evidence collected from human subjects. A general approach 
to this kind of research was proposed in Section 9.4. Other wider variations are also 
feasible. For instance, one could train neural networks on a task analogous to Krum-
hansl’s probe tone method. One could also train networks to rate the dissonance 
or consonance of musical stimuli where network output is informed not by music 
theory but instead by existing experimental results.

With respect to the architectural level, or even the implementational level, 
researchers can now consider more complex sorts of encodings. All of the networks 
reported in this book have encoded stimuli in a fashion that maps directly onto music 
theory (e.g., pitch-class, pitch). Other physical or physiological encodings are possible. 
For example, what is the effect of representing musical inputs as collections of sine 
wave frequencies, or in a fashion that emulates the encoding of the basilar membrane?
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Similarly, the design decisions that guided architectural selections for my simu-
lations led me to focus on musical regularities that could be obtained from spatially 
represented stimuli. For the most part, I avoided the study of musical stimuli that 
were presented through time, or the study of temporal musical regularities such as 
rhythm. My success in the simulations reported in this book indicates that study-
ing temporal aspects of music with (interpreted) networks is a crucial next step. 
Furthermore, the exploration of music is not limited to the architectures that are 
employed in this book; many other network architectures can be explored (Griffith 
& Todd, 1999; Todd & Loy, 1991). These include self-organizing networks that learn 
statistical properties of inputs without requiring an external teacher (Gjerdingen, 
1990; Kohonen, 2001; Page, 1994), or recurrent networks that are explicitly designed 
to detect regularities in time (Elman, 1990; Franklin, 2004, 2006).

There is also a growing interest in deep learning networks (Bengio et al., 2013; 
Hinton, 2007; Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Larochelle et 
al., 2012). These networks, which have many more layers of hidden units than we 
have been considering in this book, have solved many difficult pattern recognition 
tasks in natural language, image classification, and the processing of sound (Hinton, 
2007; Hinton et al., 2006; Mohamed, Dahl, & Hinton, 2012; Sarikaya, Hinton, & 
Deoras, 2014). Some of these tasks involve processing music, including its temporal 
properties (Humphrey, Bello, & LeCun, 2013).

The power of deep learning as a technology is becoming well established. How-
ever, it is important to remember that the goal of a connectionist cognitive science 
of music is not to generate new technologies. Instead, it is to enhance our under-
standing of musical cognition, or of music theory, by providing insights into these 
domains. These insights require us to investigate how networks solve problems, and 
to use these interpretations of network processing to inform theory. Deep learning 
provides a powerful technology, but techniques for interpreting the structure of 
deep belief networks are in their infancy (Erhan et al., 2010). Until their internal 
structure can be fundamentally understood, these powerful networks are likely not 
going to provide new directions to a cognitive science of music.

My hope is that the results reported in this book will serve as an impetus for 
continued exploration, pursuing investigations of additional musical properties 
using the architectures described here, or employing new kinds of artificial neural 
networks. However, it is important to remember that the success of a connectionist 
cognitive science of music depends on one fundamental research goal: interpreting 
the internal structure of a network after it learns. Network interpretations will be 
the source of new theoretical insights into musical cognition.
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